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5.1  Introduction 

There are many applications of statistics in the field of food studies. One of 

the earliest was in agriculture where R. A. Fisher used experimental design to 

partition variation and to enable more precise estimation of effects in crop plot 

experiments. There was even an early sensory experiment on tea tasting (Fisher 

1966), and since then statistical applications have increased as food science 

emerged as a distinct applied science subject. Some examples of the form of 

statistical applications in food are given in Table 1. Preparation of data 

summaries is one general application of statistics that can be applied across the 

board. It is one of the simplest applications and can be done manually if 

necessary, depending on the requirements. A variety of simple graphs and table 

methods are possible, which allow rapid illustration of results. These summaries 

are taken further in statistical quality control where measures such as the mean 

value are plotted „live‟, as a process is on-going. The graphs (control charts) 

used include limit lines which are set by using other statistical methods, which 

allow detection of out-of-limit material, e.g. food product packs which are 

below statutory minimum net weight. Statistical methods can also be applied to 

evaluate the trustworthiness of data obtained by any method of measurement. 

This application has been used extensively in evaluation of chemical data 

generated by analytical laboratories. The statistical analysis provides an 

evaluation of how dependable the analytical results are. This can range from 

within-laboratory to between-laboratory comparisons, globally. Enforcement 

agencies rely on such checks so that they can monitor adherence to legal 

requirements with confidence. Food research application brings in analysis of 

differences and relationships. Here, hypotheses are put forward on the basis of 

previous work or new ideas and then magnitudes of effects in sample statistics 

can be assessed for significance, for instance, examination of the change in 
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colour pigment content during frozen storage of vegetables. Examination of 

relationships requires that different measurement systems are applied and then 

compared. There are many examples of this in studies of food where data from 

instrumental, sensory and consumer sources are analysed for interrelationships. 

The process of sampling of items, including food material and consumer 

respondents, can be controlled using statistical methods and here a statistical 

appreciation of variability is important. Experimental design takes this further, 

where sources of such variation are partitioned to improve precision or 

controlled and minimised if extraneous. A common example is the unwanted 

effect of order of samples in the sensory assessment of foods – design 

procedures can minimise this. In fact, all the above examples rely on design 

procedures if the result is to be valid and adequately interpreted. 

Table 5.1  Some applications of statistics in the food field. 

Method Application 

Summaries of results 
Tables, graphs and descriptive statistics of instrumental, sensory 

and consumer measures of food characteristics 

Analysis of differences and 

relationships 

Research applications on differences in food properties due to 

processing and storage; correlation studies of instrumental and 
sensory properties 

Monitoring of results 
Statistical control of food quality and parameters such as net 

filled weight 

Measurement system integrity Uncertainty of estimates for pesticides and additives levels in food 

Experimental design 
Development and applications of balanced order designs in 

sensory research 

5.2  Description 

5.2.1  The Approach 

Progress in food science and all its associated disciplines is underpinned by 

research activity. New information is gathered by investigations and experiments, 

and in this way knowledge is advanced. The scientific approach to research and 

exploration follows an established paradigm called the positivism method. This 
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postulates that events and phenomena are objective and concrete, able to be 

measured and can be explained in terms of chemical and physical reactions. All 

scientists are familiar with this viewpoint, which is described as the scientific 

deductive approach (Collis and Hussey 2003). It is largely based on empirical 

methods, i.e. observations from experiments. The scientific style of approach can 

be used for any type of investigation in any subject. The procedure uses deduction 

from theory based on current knowledge. To advance knowledge, experiments 

can be designed to test advances on existing or new theory, using a hypothesis 

process. The findings can then be disseminated and knowledge increased. Results 

are generalised and can be used to establish new theories and to model processes 

and event reactions, which in turn allows prediction in the formation of new 

hypotheses. The term quantitative research is also used in reference to the 

scientific approach. This strictly refers to the nature of the data generated, but it 

implies the deductive positivistic viewpoint. In this process, the researcher is 

assumed to be objective and detached. Ultimately, the deductive method searches 

for an explanation on the basis of cause–effect relationships. Without such 

procedures, there would be no progress and they form the foundation of the 

scientific approach in many food disciplines. Amore recent approach is that of 

phenomenology where an inductive approach can be used to examine phenomena 

on the basis that they are socially constructed. Theories and explanations are 

generated and built up from data gathered by methods and techniques such as 

interviews (Blumberg et al. 2005). These methods are often described as 

qualitative, which again refers to the data which are in the form of words rather 

than numbers. The modern food practitioner needs to be aware of such data as 

there are several qualitative methods (e.g. interviews and focus groups) used in 

sensory and consumer work. Analysis of data from qualitative methods can be 

summarised by numerical techniques such as counting the incidence of certain 

words and phrases, but usually statistical analysis as such is not involved. Typical 
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use of the scientific approach in food studies entails identifying a topic for 

research or investigation then posing a research question(s). Deductive reasoning 

from existing knowledge is examined to develop a research hypothesis. A plan 

can then be drawn up with an experimental design and specification of 

measurement system, etc. Data are gathered and then statistical analysis is used to 

test the hypothesis (quantitative). The scope of the procedure can be from a 

simple investigation of the „fact-finding‟ type, e.g. determination of chemical 

content values, to a complex experimental design, e.g. a study on the effect of 

temperature, pressure and humidity levels on the drying properties of a food. In 

this latter case, the objective would be to identify any significant differences or 

relationships. Experimental control means that results can be verified and 

scrutinised for validity and other aspects. Simple experiments do not usually 

require stating of hypotheses, etc. In circumstances where differences or 

relationships are being examined, e.g. „Does process temperature affect yield of 

product‟, a more formal procedure is used or, at least assumed (Fig. 1.). The 

conclusion of one investigation is not the end of the process as each piece of work 

leads to new ideas and further studies, etc. 
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Figure 5.1  The approach to investigation. 

5.2.2  Chemical Analysis 

The chemical analyst is interested in the end result, but also in the uncertainty 

of the estimation; some researchers state that unless a measure of uncertainty is 

included the results themselves are useless (Mullins 2003). This view could 

well apply to all scientific measures, but there are still occurrences of it not 

being adopted for chemical data. Many investigations have taken place to 

examine error components and to quantify their contribution to uncertainty. 

Also, cost considerations are included in these studies as reducing uncertainty 

usually means additional analyses and hence cost in terms of time, resources 

and personnel. The interest here is in the balance between gain in certainty, 

against the increased cost to the laboratory (Lyn et al. 2002; FSA 2004a). 

Another unique aspect of studies in this topic is that the uncertainty is examined 
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not only for location measures estimate such as the mean, but also for that of the 

level of variability – thus the uncertainty of the standard deviation is also of 

interest. Method proficiency testing is one aspect of this protocol that has been 

developed for some common standard methods with measures all focused on 

uncertainty in analytical chemistry. In addition to analysis coming under this 

latter umbrella, where analyses such as pesticides are determined at very low 

level, there are many proximate analyses and „crude content‟ methods used for 

food. These may exhibit higher levels of uncertainty, but their results and in fact, 

those from any instrumental measure can be subjected to some of the 

calculations detailed below. Food analysis methods have received special 

attention via The Food Analysis Performance Assessment Scheme (FAPAS). 

Patey (1994) described the initial stages and progress of this initiative – there 

was some improvement, but not for all analyses and all laboratories. A 

relatively simple check on performance for proficiency testing schemes is based 

on calculation of a form of z-score 

z = (Test result − reference value)/sigma 

Sigma is a designated „target value‟ for the standard deviation of the method 

data, based on realistic estimates. The larger the discrepancy (error) between the 

test and the reference is, the larger the z value is. The calculation produces z in a 

standardised form – values equal or less than 2 are required for the laboratories‟ 

result to be declared „satisfactory‟. 

Accuracy and Bias in Chemical Analysis 

As stated above, accuracy of a chemical method is a measure of how close it 

is to the „true‟ value. Variation from the true can occur due to error in the form 

of bias (Kane 1997). This circumstance can apply to a number of stages in the 

analysis (Table 5.2)  



 

Chapter 5  Application of Statistical Techniques in Food Science: Chemical Analysis Data 
 

http://www.sciencepublishinggroup.com 149 

Table 5.2  Bias Sources. 

Source 

Operator 

Lab 

Preparation 

Run 

Method 

It is crucial that this source of error is quantified and removed, or at least 

accounted for in any analytical determination, although this is not always done 

(O‟Donnell and Hibbert 2005). Bias can be calculated as the error of the mean, 

and by the location of the range specified by a confidence interval. The „true 

value‟ is represented by reference samples or the nearest equivalent. 

5.3  General Analysis 

5.3.1  Errors and Measurement Uncertainty 

The term, “experimental error” is used extensively in student lab books to 

account for all manner of unexpected results. While this may be appropriate the 

error can be allocated to a number of possible sources which can usually be 

identified as discussed below. Gross errors (e.g. a misread balance or grossly 

incorrect additions /omissions of reagents) are usually accidental in nature and 

with care they can be avoided. In the Kjeldahl analysis an obvious gross error 

would be seen if there was omission of the catalyst for one of the replicates. 

Rejection of that value could be considered and there are statistical tests for such 

“outlier” values. Thus these errors may not affect all measurements in a set and 

often can be easily detected. Other types of error occur even when the greatest 

care is taken. Systematic errors (e.g. a balance which requires servicing and 

calibration, unrecognized faulty technique by the analyst, or a method related 
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systematic error) usually affect all the analyses in a similar manner. The 

systematic error effect is also known as bias and affects accuracy. Note that even 

if a balance is calibrated (i.e. set to weigh accurately using certified weights) it 

may still give an inaccurate reading if the balance model is unable to read beyond 

ascertain level. Thus the lack of calibration is determinate error, and can be 

changed, but the other is constant. Calibration improves accuracy and reduces or 

removes any bias which instruments may have. A blank determination is another 

aid to detection of a systematic error. Another source of error is detected if the test 

sample was analysed more than once. Even if gross and systematic errors are 

absent, repeated measurements may show some variation. These are caused by 

random errors, e.g. small errors in weighing, use of volumetric devices and other 

analysis instrumentation. Even highly trained analysts using top of the range 

equipment might not avoid random error. The random error effect in a series of 

measurements causes the individual results to fall on either side of the mean. 

They may be accidental in nature but are indeterminate as they are difficult to 

remove entirely. Random errors affect the precision of the analysis method. These 

errors can occur at any stage of the analysis and accumulate to produce the overall 

error. Some errors augment one another whereas others may cancel one another 

out. The replicate values in Table I are all different and possible error sources 

could be deduced by examination of each stage of the Kjeldahl analysis. An 

estimate of error magnitude in the final results can now be calculated. 

Table 5.3  Quality control laboratory data for percentage of  

crude protein analysis on food product. 

Replicate Number Percentage of protein Analysis A (N2 x 6.25) Analysis B 

1 7.3 8.4 

2 8.5 9.1 

3 - 8.7 

4 - 8.2 

Mean 7.9 8.6 

Note: True/most probable value = 8.8 per cent. 



 

Chapter 5  Application of Statistical Techniques in Food Science: Chemical Analysis Data 
 

http://www.sciencepublishinggroup.com 151 

5.3.2  Accuracy and Precision in Measurement 

Accuracy is the extent of agreement between the determined value and the 

true or most probable value; and precision is the extent of agreement among a 

series of measurements of the same quantity. It is important to note that with 

these terms the presence of one does not automatically imply the other: a high 

degree of precision does not imply accuracy and vice versa. 

(a) Measures of Accuracy 

The degree of concordance with the true value can be calculated as the error of 

the mean which can also be expressed as the relative error of the mean (REM): 

EM 100
EM M T % REM

T


    

Where: 

EM = error of the mean 

T = “true” or “actual” value 

M = mean value. 

The true value may not be available for unknown samples; unless an 

independent analysis has been performed giving a confident estimate. If an 

indication only is required then a rough estimate can be given by “typical” values 

from text books and/or food product labels. In the food production situation 

(Table 3), the true expected value can be calculated for quality control purposes 

from knowledge of the chemical composition of the specified ingredients. 

Alternatively a standard or control material of known composition can be 

analysed along with the unknown under the same analysis conditions, thus 

enabling the above calculation. A suitable crude test material can be made up by 
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the analyst, formulated from constituent chemicals or purified constituents. 

Another possibility used in some laboratories is use of a previously analysed 

material which is kept in stable storage and sampled along with the new samples. 

For more critical circumstances a CRM (certified reference material) would be 

required. While many RMs are available, not all common constituents such as 

nitrogen are found in the certified lists and the matrix (i.e. the physical and 

chemical “makeup”) of the RM may be different from the unknown food sample. 

There have been some developments to answer these food specific requirements, 

e.g. the FAPAS (food analysis performance assessment scheme) initiative run by 

MAFF (Ministry of Agriculture, Fisheries, and Food) which has food product test 

materials for proximate analyses such as nitrogen protein. The use of a hierarchy 

of reference standards from secondary RMs to certified RMs and ultimately 

primary RMs forms part of the traceability chain for chemical composition 

instigated by VAM. The presence of errors will affect the magnitude of the 

percentage REM obtained. Assuming the absence of gross and systematic errors 

then a percentage REM of zero is possible but unlikely due to random errors. 

Usually negative or positive percentage REM values are obtained representing 

results which are below or above the true value respectively. These statistics can 

now be calculated for the data of Table 5.3. As could be easily deduced by 

inspection of the mean values, both analyses have underestimated percentage 

protein, and the magnitude of this is shown (Table 5.4) by the negative percentage 

REMs. Analysis B has a greater agreement with the most probable value. 

(b) Measures of Variability (Precision) 

The standard deviation (SD) and the mean absolute deviation (MD) introduced 

previously are measures of precision. These can be standardized as the percentage 

coefficient of variation (%CV; also known as the relative standard deviation) and 

the percentage relative mean deviation (% RMD) respectively: 
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SD 100
% CV

M

MD 100
% RMD

M







 

Where 

SD = standard deviation 

M = mean 

MD = mean deviation. 

These measures are related (MD is approximately 0.8 times SD). Both are 

included here as MD is perhaps easier to understand and calculate. In the form 

above, erroneous comparisons between data sets possessing different 

measurement scales are avoided, e.g. an MD often for a mean of 10,000 gives a 

very low percentage RMD (0.1 per cent), but with the same MD for a mean of 

100 the RMD is very high (10 per cent). Two other related measures are 

important. Repeatability is the precision obtained when a method of analysis is 

repeated under the same conditions, i.e. by the same analyst using the same 

equipment, on the same sample material, etc. (also referred to as “within 

laboratory” or “within run” precision). The analyses in Table 3 can be assumed to 

have been done under repeatability conditions. Reproducibility is the precision 

obtained when the same method of analysis is repeated on the same test material 

but under different conditions, i.e. a different analyst, different setoff equipment 

or a different laboratory or even different method (also known as “between run” 

or “between laboratory” precision). Its usual to find that repeatability conditions 

result in greater precision than those of reproducibility. In fact the poor 

reproducibility shown by different laboratories when analysing the same samples 

was one of the reasons for instigating the VAM project. The magnitude of the 
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percentage CV (or percentage MD) will range from zero upwards. “Perfect” 

precision would produce a CV percentage of zero and although this can occur, 

more commonly small values are obtained, caused by random error. Large 

percentage Values may point to gross errors. Note that even if the method is 

perfectly precise, repeated values could still vary owing to inherent variation 

within the food material itself. Calculation of precision for the data of Table 5.3 

shows that precision is relatively poor in seta (high %CV, %RMD values). 

Pertinent to these measures is the number of repeated measurements. 

Table 5.4  Accuracy measures for percentage of protein data. 

 Analysis A Analysis B 

Number of replicates 2 4 

Mean (%) 7.9 8.6 

% REM -10.2 -2.3 

Note: Most probable value = 8.8 per cent 

5.3.3  Acceptable Level of Replication 

The level of replication is an important consideration as it affects the statistical 

measures and the cost of the analysis in terms of time and personnel. In practice 

the costs can limit the degree of replication. For routine analyses with established 

techniques, modern instruments and trained analysts, minimal replication maybe 

common, except where the technique is very rapid and low in cost, e.g. as with 

modern nitrogen analysers based on the Dumas method (2.5 minutes per sample). 

Thus duplicate determinations or even a single one done along with a reference or 

standard analysis for the run may be typical. If a single determination is made 

there is no reference point for error detection. Statistically, the greater the number 

of determinations is, the more reliable or accurate the result is. Whether or not a 

low level of replication is acceptable depends on several factors: the experience of 

the analyst and the laboratory itself; the method of analysis and its history with 
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respect to the food in question; and the importance of the decisions which are to 

be based on the results. Certainly, low levels of replication in isolation provide a 

weak basis for making confident decisions regarding the data obtained, e.g. 

standard deviation based on only two values is an extremely shaky foundation on 

which to base further inferences. The difference in magnitude between the SD 

values (Table 5.5) for two and four replicates, for data sets with similar ranges, 

illustrates this point. This does not, however, preclude the routine use of 

duplicates. The final consideration is how to use the calculated measures  

(Tables 5.4 and 5.5) to answer questions concerning the acceptability of the 

obtained levels of precision and accuracy 

Table 5.5  Accuracy measures for percentage of protein data. 

 Analysis A Analysis B 

Number of replicates 2.0 4 

Mean (%) 7.9 8.6 

Range (%) 1.2 0.9 

MD 0.6 0.3 

SD 0.85 0.39 

%RMD 0.6 3.9 

%CV 10.74 4.55 

5.3.4  Acceptance Level for Precision 

The deviation of a set of replicates around the mean depends on the precision 

of the measurement system and on the degree of variability of the population 

from which the samples originate. If both are of a completely unknown nature 

then whether or not to accept a set of replicates cannot be decided easily. Some 

measure of variability must be established. This can be done by carrying out an 

initial set of a larger number of replicates than is envisaged for routine use, e.g. 

at least ten, or if appropriate, by proceeding with duplicate analyses without 

considering variability until a “data bank” of typical values has been established 
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from which an estimate of deviation in the form of the standard deviation can be 

calculated, i.e. comment concerning the “expected variation” for a set of 

replicates cannot be made until some measure of variability has been 

established. Once this is available then an error estimate, known as a confidence 

interval (CI) can be calculated for the population mean of the measurement. It 

gives a region within which we are confident that the population mean will be 

located, with a specified probability or “certainty” level. This statistic can be 

used as an estimate of bias (accuracy) and the width of the interval gives 

another perspective on precision, as it emphasizes the effect of sample size. To 

understand a confidence interval we need to appreciate the nature of a 

population distribution. Put simply, if we know how a population is “mapped 

out” then it can be used to make estimations based on samples taken from that 

population. Imagine that the food product (Table 5.3) is analysed a very large 

number of times for crude protein content and grouped values are plotted on a 

histogram – then it is likely that a rough inverted cone shape would be obtained 

(see Figure 5.1). Increasing the number of points would have smoothing effect 

on the shape and with a very large number bell shaped curve would be obtained. 

Ultimately with an infinitely large number of values the curve would be smooth 

 

Figure 5.2  Frequency Distribution of 100 per cent Crude Protein Content 

Determinations. 
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and would represent the population distribution for the measurement. Note that 

these measurements are the entire same constituent on the same material, using 

the same technique, etc. The curve shape would be typical of a normal 

distribution (see Figure 5.2) and similar distributions, “normal” in this case 

meaning “standard”. The curve has certain properties which allow powerful 

inferential statistics to be performed– the mean (μ), mode and median are 

centrally located; on either side of the centre the two “tails” are of such shape that 

more values are clustered towards the centre than at the edges; in terms of 

variation the proportion of the curve at one or more standard deviations(s) from 

the mean can be marked and measured. It can be seen that when selecting a 

random sample from such a population, there is a higher probability of obtaining 

a percentage protein value within ± 1 standard deviation of the population mean 

than further away, as there is more area under that region of the curve. In fact 

approximately 68 per cent of all the values lie in this region, and approximately 

95 per cent lie within ± 2 standard deviations. Most chemical and physical 

measurements on food samples are likely to come from abnormal population. 

Even if the parent population deviates from normality, statistical theory proves 

that the distribution of the means of samples from such a population will 

approximate to normality. Thus this distribution will also possess the above 

properties and provides the basis for determining the confidence interval for the 

population mean based on the sample mean. Large sample sizes provide adequate 

estimates of the population parameters to allow calculation of the confidence 

interval using the proportions described above. For small samples of the order 

likely to be used in chemical analysis more appropriate distribution “standard” for 

making estimates is the t-distribution – it is similar in shape and characteristics to 

the normal distribution but is wider and flatter, having more “spread” (especially 

for small numbers of samples or replicates). Thus the interval will be wider, 

reflecting the increased uncertainty. A measure of the degree of confidence must 
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be specified and it is expressed on a probability scale of zero to 100 per cent, with 

100 per cent representing absolute certainty. Unfortunately, choosing the 100 per 

cent level of confidence would result in an interval of very large width, unusable 

in practical situations. Usually the 95 or 99 per cent limit is selected, representing 

high degrees of confidence. The confidence interval limits are calculated using 

the t-value from the t distribution based on the number of replicates: 

95% CI M t SD / a    

Where 

n= number of replicates. 

The value of t is obtained from statistical tables and its magnitude depends on 

the confidence level and on the number of samples analysed (more specifically 

on the degrees of freedom, which is equal to the number of samples minus1). 

Thus a high confidence level combined with low replication would maximize 

the t-value and the interval width and vice versa. These calculations can now be 

done for the data of Table 3 and are summarized in Table 5.6. 

Thus, assuming no systematic error for Analysis B, the analyst would be 

confident that 95 per cent of the time, the population mean for percentage of 

crude protein content would lie between 8.0 and 9.2 per cent. The width of the 

interval can guide the acceptability of precision. Whether or not it is acceptable 

depends in turn on how confident the analyst is in the validity of the SD. In set 

A it is based on only two determinations and gives a confidence interval of 15.2 

per cent owing to the large t-value and the large SD – in isolation such a wide 

interval would be unacceptable. 
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Figure 5.3  A normal distribution frequency curve. 

Table 5.6  Confidence intervals for percentage of protein data. 

 Analysis A Analysis B 

Number of replicates 2 4 

Mean (%) 7.9 8.6 

Range (%) 1.2 0.9 

SD 0.85 0.39 

CI (95%) 0.3-15.5 8.0-9.2 

t-value (95% confidence) 12.71 3.18 

Analysis B, using four replicates, cuts the interval to 1.2 per cent, obviously 

more acceptable. This fact seems to condemn low replication but if a confident 

SD is established initially by a larger number of replicates, or on series of at 

least six duplicate analyses, then this can be used to calculate a useful statistic, a 

form of repeatability for subsequent analysis with two replicates: 

 r t 2 SD    

Where 

r = estimated variability or repeatability which must not be exceeded; 

t = value from table based on the larger original number of initial analyses; 
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SD = standard deviation of original number of repeat determinations under 

repeatability conditions. 

Assuming such circumstances, an additional analysis based on ten crude 

protein determinations is given below (Table 5.6) along with the calculated r 

statistic. The t-value is smaller as it is based on the original ten determinations. 

Thus we would expect duplicate crude protein determinations to differ by less 

than 1.1 per cent, so although Analysis A looks more favourable now it could 

still be rejected on these grounds. Indeed, in the author‟s experience of the 

manual Kjeldahl technique on a range of food products, the precision of 

Analysis B (or better) is more typical and it is likely that a gross error has 

occurred in Analysis A. Following the above procedure now gives a more 

definite guide to accepting the level of precision. 

5.3.5  Acceptable Level of Accuracy 

The magnitude of the percentage of REM or the EM will decide this, but how 

large should it be before it is regarded as unacceptable? If it‟s based on 

comparison with typical values then these can vary by up to 10 per cent or more 

and this must be borne in mind when gauging accuracy via crude methods. 

Similarly “most probable” estimates are also approximations. Analysis B (Table 

5.5) is within 10 present of the estimated true value whereas Analysis A exceeds 

this limit. The confidence interval detailed above as a precision check canals be 

used for accuracy, provided that confident measure of the SD was obtained – if 

the expected value lies within the interval then this is acceptable. In the example 

(Table 5.5), both analyses achieve this level of acceptance, but the Analysis A 

result is rejected because of the very large interval. Determination of crude 

protein is a proximate technique, and accuracy much beyond that of Analysis B 

may be an unrealistic target. For a certified RM, a similar procedure can be 
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applied – the determined interval should contain the certified analysed value. 

Additionally an interval will be quoted on the certificate – the mean value 

obtained by the analyst should lie within this interval. This is a more stringent test 

as the certificate interval is likely to be narrower. In either case, if the determined 

mean is out with the interval then the result can be viewed as inaccurate and this 

may indicate the presence of a systematic error. Depending on circumstances, 

there is some leeway in the decision-making process and individual analysts can 

decide on acceptable proximity to the precision and accuracy levels. Textbooks 

on analytical methods may not quote figures for acceptable accuracy and 

precision. Often it is left to the experience and knowledge of the analyst. 

5.4  Actualisation 

Study Case: Statistical Technique Application Example – Precision 

Calculations for Chemical Analysis Data; Source: J. A. Bower 2009. 

Data gathered during routine chemical analysis of moisture content in foods 

were examined for the level of precision. Mean values were in the range  

70–72 g/100 g and based on the data bank the population standard deviation was 

taken as 0.35 g/100 g. A duplicate measure was carried out under repeatability 

conditions. 

Table 5.7  Repeatability Calculation Data (Excel). 

Data Moisture Content (g/100g) 

Duplicate 1 71.5 

Duplicate 2 70.9 

Mean 71.2 

sd(pop) 0.35 

sd (unknown) 0.42 

t95%, ldf 12.71 

repeatability 0.97 

repeatability 7.62 
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Table 5.7 shows the result of the duplicate moisture content determination. 

Assuming repeatability conditions as defined above, precision (repeatability) 

can be calculated in two ways. 

As the population standard deviation (sigma (σ)) is known, then: 

Repeatability 95%= z 95% × square root (2) × σ= 1.96 × square root (2) × σ 

This is essentially the confidence interval for a duplicate determination, i.e.  

n = 2. The z value is the confidence level factor based on a normal distribution. 

In the example, repeatability has a value of 0.97%. Thus, duplicate 

determinations of moisture by the particular method in the same laboratory, 

same technician, reagents, etc., should differ by not more than 0.97%. The 

population sigma can be obtained from previous data as in the example, or by 

carrying out an initial larger set of determinations to give an improved estimate. 

If sigma is estimated as the sample sd, then: 

Repeatability 95% = t 95%, 1d f × square root (2) × sd 

The confidence level factor is based on the t distribution. This results in a 

much higher value (>7%), but it is also possible to use a t value based on a 

larger earlier set to give more representative measure of repeatability, and a 

narrower interval. In practice, duplicate moistures by oven drying give %CVs of 

<1%, thus the former estimate of repeatability is not usual. Some texts define 

repeatability as „within laboratory‟ in a broader way in that it includes different 

operators, which is more realistic as it cannot be guaranteed that the same 

technician will analyse all incoming samples at one session, etc. Repeatability 

can also be obtained via the „within variance‟ estimate in a two-way ANOVA. 
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5.5  Reproducibility 

Repeatability is a critically important measure for a laboratory, but there are 

many analytical laboratories and there is concern that results can vary depending 

on which laboratory is used. There are many examples of such discrepancies in 

the literature (e.g. Thompson 1994), with z-scores (as above) attaining values well 

above the ±2 limit for some laboratories (±10 in some instances). This has given 

rise to a further definition of precision. The term is expanded to cover variation 

between different laboratories – reproducibility. This is the variability where all 

aspects other than the material being analysed are different, i.e. analysis in 

different laboratories, hence different technicians, reagents, times etc. The 

definition is calculated in a similar manner to that for repeatability, with the 

inclusion of the „different laboratory effect‟: reproducibility is the magnitude of 

the interval for 2 determinations by any two laboratories. The calculation reflects 

the wider source of variation by incorporating the variance of both within- and 

between-laboratory sources: 

Reproducibility 95% (population variance known):= z 95% × square root (2) 

× square root (variance within+ variance between) 

And  

Reproducibility 95% (variance estimated): = t 95%, 1 × square root (2) × 

square root (estimated variance within+ estimated variance between) 
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Table 5.8  Estimation of within- and between-laboratory  

variance using ANOVA (Excel). 

Data 
Moisture content 

(g/100g) 

  Lab A Lab B 

 
71.1 72.8 

71.7 72.9 

Mean 71.4 72.85  Estimate Known 

sd(pop) 0.18 0.09 Within variance 0.093 0.065 

sd(unk) 0.42 0.07 Between variance 2.10 1.6 

T95%,1df 12.71 12.71    

Reliabilityz 0.50 0.25 T95%,1df   

Reliabilityt 7.62 1.27 Reproducibilityz   

   Reproducibilityt   

ANNOVA: single factor 

Summary 

Groups Count Sum Average Variance 

 Lab A 2 142.8 71.4 0.19 

Lab B 2 145.7 72.85 0.005 

ANNOVA 

Source of variation SS df MS F P - value Fcrit 

Between groups 2.103 1 2.10 22.73 0.041 18.51 

Within groups 0.185 2 0.093    

Total 2.288 3     

The estimates in the second formula are conveniently obtained by ANOVA, 

which provides a „pooled within variance‟ as well as the „between variance‟. This 

is shown for two laboratories – laboratory A compared with Laboratory B  

(Table 5.8). The variance of each laboratory is given and the average of this is the 

„pooled within variance‟ – also shown as the „within group mean square‟ (MS). 

The „between variance‟ is the „between groups MS‟. These were used to calculate 

the reproducibility of these two laboratories. As seen, the reproducibility figures 

are higher than those of repeatability, especially when the variance estimates are 

based on two determinations (again, this can be improved using a known or an 

established more confident variance estimate). The above analysis is limited in 

that it cannot provide any indication of interaction of laboratories with different 

concentrations or levels of a particular analyte, e.g. a food with a higher or lower 
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level of moisture. Inclusion of a second set of replicates from another food type 

allows interaction to be assessed. Here, reproducibility is determined via 

estimates of within, between and interaction, which are adjusted to take into 

account the number of determinations, etc. Reproducibility is still high when 

more than one concentration of the moisture content is considered, but the 

differing concentration does not appear to cause a significant effect. Such work is 

done in inter-laboratory proficiency-testing schemes, and large precision studies 

can involve ten or more laboratories examining a particular method at several 

levels of concentration. 

Table 5.9  Reproducibility with interaction (Excel). 

Data 
Moisture content 

(g/100g) 

 

 Lab A Lab B 

s1 

 
s2 

73.4 75.1 

72.7 

66.5 
68.0 

74.2 

67.9 
67.2 

Variance Estimates 

Within Lab 0.51 =Within   

Between Lab 0.24 =columns – interaction / number of determinations per lab 

Interaction 0.17 =interact – within / number in each cell 

T95%,4df 2.78 df = within   

Reproducibility 3.76    

Annova two – factor with replication 

ANNOVA 

Source of variation SS df MS F P - value Fcrit 

Sample 83.21 1 83.21 164.76 0.0002 7.71 

Columns 1.81 1 1.81 3.57 0.13 7.71 

Interaction 0.84 1 0.84 1.67 0.26 7.71 

Within 2.02 4 0.51    

TOTAL 87.88 7     
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5.6  Discussion 

It is possible to evaluate scientific data without involving statistical analysis. 

This can be done by experienced practitioners who develop a „feel‟ for what the 

data are „telling them‟, or when dealing with small amounts of data. Once data 

accumulate and time is limited, such judgement can suffer from errors. In these 

cases, simple statistical summaries can reduce large data blocks to a single 

value. Now, both the enlightened novice and the experienced analyst can judge 

what the statistics reveal. Consequent decisions and actions will now proceed 

with improved confidence and commitment. Additionally, considerable savings 

in terms of time and finance are possible. In some instances, decision-making 

based on the results of a statistical analysis may have serious consequences. 

Quantification of toxins in food and nutrient content determination rely on 

dependable methods of chemical analysis. Statistical techniques play a part in 

monitoring and reporting of such results. This gives confidence that results are 

valid and consumers benefit in the knowledge that certain foods are safe and 

that diet regimes can be planned with surety. Other instrumental and sensory 

measures on food also receive statistical scrutiny with regard to their 

trustworthiness. These aspects are also important for food manufacturers who 

require assurance that product characteristics lie within the required limits for 

legal chemical content, microbiological levels and consumer acceptability. 

Similarly, statistical quality control methods monitor online production of food 

to ensure that manufacturing conditions are maintained and that consumer rights 

are protected in terms of net weights, etc. Food research uses statistical 

experimental design to improve the precision of experiments on food. Thus, 

manufactures and consumers both benefit from the application of these 

statistical methods. Generally, statistics provides higher levels of confidence 
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and uncertainty is reduced. Food practitioners apply statistical methods, but 

ultimately, the consumer benefits. 

5.7  General Recommendations 

1. Food manufacturers and producers should adhere and comply with 

national standard bodies through established analytical procedures, 

regulations and standards. 

2. Research scientists should use statistical techniques in experimental and 

research work and present findings or results that are empirical, accurate 

and precise. Update information on new statistical software and 

packages should be adopted and included in educational curriculums for 

study programmes. 

3. Application of statistical techniques in the following areas should be 

promoted: 

Instrumental measures - covering any measurement system from 

chemical and physical analysis to specific food instrumentation methods 

and process measures, e.g. protein content, Lovebird colour measures, 

air speed setting, etc. 

Sensory measures – to include all sensory tests used by trained assessors 

such as discrimination tests and descriptive analysis methods. Consumer 

tests– to include some sensory methods, which are affective or hedonic 

in nature, e.g. preference ranking. Generally systems should cover 

mostly laboratory measurements. 
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Consumer measures- should refer to questionnaire measures in surveys, 

such as consumers‟ views and opinions on irradiated foods. This should 

cover consumer applications which are usually non-laboratory in nature. 

5.8  Conclusion 

Food issues are becoming increasingly important to consumers, most of who 

depend on the food industry and other food workers to provide safe, nutritious 

and palatable products. These people are the modern-day scientists and other 

practitioners who work in a wide variety of food-related situations. Many will 

have a background of science and are engaged in laboratory, production and 

research activities. Others may work in more integrated areas such as marketing, 

consumer science and managerial positions in food companies. These food 

practitioners encounter data interpretation and dissemination tasks on a daily 

basis. Data come not only from laboratory experiments, but also via surveys on 

consumers, as the users and receivers of the end products. Understanding such 

diverse information demands an ability to be, at least, aware of the process of 

analysing data and interpreting results. In this way, communicating information 

is valid. This knowledge and ability gives undeniable advantages in the 

increasingly numerate world of food science, but it requires that the practitioner 

have some experience with statistical methods. Unfortunately, statistics is a 

subject that intimidates many. One need only consider some of the terminology 

used in statistic text titles (e.g. „fear‟ and „hate‟; Sal kind 2004) to realise this. 

Even the classical sciences can have problems. Professional food scientists may 

have received statistical instruction, but application maybe limited because of 

„hang-ups‟ over emphasis on the mathematical side. Most undergraduate 

science students and final-year school pupils may also find it difficult to be 

motivated with this subject; others with a non-mathematical background may 
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have limited numeracy skills presenting another hurdle in the task. These issues 

have been identified in general teaching of statistics, but like other disciplines, 

application of statistical methods in food science is continually progressing and 

developing. Statistical analysis was identified, two decades ago, as one subject 

in a set of „minimum standards‟ for training of food scientists at undergraduate 

level (Iwaoka et al. 1996). Hartel and Adem (2004) identified the lack of 

preparedness for the mathematical side of food degrees and they describe the 

use of a quantitative skills exercise for food engineering, a route that merits 

attention for other undergraduate food science courses. Unfortunately, for the 

novice, the subject is becoming more sophisticated and complex. Recent years 

have seen this expansion in the world of food science, in particular in sensory 

science, with new journals dealing almost exclusively with statistical 

applications. Research scientists in the food field may be cognizant with such 

publications and be able to keep abreast of developments. The food scientist in 

industry may have a problem in this respect and would want to look for an 

easier route, with a clear guide on the procedures and interpretation, etc. 

Students and pupils studying food-related science would also be in this situation. 

Kravchuk et al. (2005) stress the importance of application of statistical 

knowledge in the teaching of food science disciplines, so as to ensure an on-

going familiarity by continual use. Some advantages of being conversant with 

statistics are obvious. An appreciation of the basis of statistical methods will aid 

making of conclusions and decisions on future work. Other benefits include the 

increased efficiency achieved by taking statistical approach to experimentation. 
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Mutanen, M. (1997) Comparisons between analytes and calculated food 

composition data: carotenoids, retinoids, tocopherols, tocotrienols, fat, fatty acids 

and sterols. Journal of Food Composition and Analysis, 10, 3–13. 

[19] Hill, A. R. C. and von Holst, C. (2001) A comparison of simple statistical methods 

for estimating analytical uncertainty, taking into account predicted frequency 

distributions. Analyst, 126, 2044-2052. 

[20] Iwaoka, W. T., Britten, P. and Dong, F. M. (1996) The changing face of food 

science education. Trends in Food Science and Technology, 7, 105–112. 
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[45] Villavicencio, A. L. C. H., Ara újo, M. M., Fanaro, G. B., Rela, P. R. and Mancini-

Filho, J. (2007) Sensorial analysis evaluation in cereal bars preserved by ionizing 

radiation processing. Radiation Physics and Chemistry, 76, 1875–1877. 

[46] Wakefield, D. and McLaughlin, K. (2005) An Introduction to Data Analysis Using 

Minitab R for Windows, 3rd ed. Pearson Education, Inc., Pearson Prentice Hall, 

Upper Saddle River, NJ. 

[47] Williams, A. A., Rogers, C. A. and Collins, A. J. (1988) Relating chemical/physical 

and sensory data in acceptance studies. Food Quality and Preference, 1(1), 25-31. 

[48] XiuRong, P. (1995) A view on the traceability of certified values of chemical 

composition RMs. VAM Bulletin, 12(reference material special), 18–19. 



 

Selected Articles in Food Science & Technology for College Graduate Students 
 

174 http://www.sciencepublishinggroup.com 

[49] Yann, D., Didier, H. and Daniel, B. (2005) Utilisation of the experimental design 

methodology to reduce browning defects in hard cheeses technology. Journal of 

Food Engineering, 68, 481–490. 

 

 

 

 


	pmuredzi@hit.ac.zw 159
	pmuredzi@hit.ac.zw 160
	pmuredzi@hit.ac.zw 161
	pmuredzi@hit.ac.zw 162
	pmuredzi@hit.ac.zw 163
	pmuredzi@hit.ac.zw 164
	pmuredzi@hit.ac.zw 165
	pmuredzi@hit.ac.zw 166
	pmuredzi@hit.ac.zw 167
	pmuredzi@hit.ac.zw 168
	pmuredzi@hit.ac.zw 169
	pmuredzi@hit.ac.zw 170
	pmuredzi@hit.ac.zw 171
	pmuredzi@hit.ac.zw 172
	pmuredzi@hit.ac.zw 173
	pmuredzi@hit.ac.zw 174
	pmuredzi@hit.ac.zw 175
	pmuredzi@hit.ac.zw 176
	pmuredzi@hit.ac.zw 177
	pmuredzi@hit.ac.zw 178
	pmuredzi@hit.ac.zw 179
	pmuredzi@hit.ac.zw 180
	pmuredzi@hit.ac.zw 181
	pmuredzi@hit.ac.zw 182
	pmuredzi@hit.ac.zw 183
	pmuredzi@hit.ac.zw 184
	pmuredzi@hit.ac.zw 185
	pmuredzi@hit.ac.zw 186
	pmuredzi@hit.ac.zw 187
	pmuredzi@hit.ac.zw 188
	pmuredzi@hit.ac.zw 189
	pmuredzi@hit.ac.zw 190
	pmuredzi@hit.ac.zw 191
	pmuredzi@hit.ac.zw 192

