| Peer-Reviewed

Evaluation of the Physicochemical, Spectral, and Thermal Properties of Sodium Selenate Treated with the Energy of Consciousness (The Trivedi Effect®)

Received: 6 February 2017     Accepted: 18 February 2017     Published: 7 March 2017
Views:       Downloads:
Abstract

Sodium selenate is a common ingredient in nutraceuticals/pharmaceuticals as a source of selenium. The objective of the current study was to evaluate the impact of The Trivedi Effect® - Energy of Consciousness (Biofield Energy Healing) on the physicochemical, spectral, and thermal properties of The Trivedi Effect® Treated sodium selenate using various analytical methods such as PXRD, PSD, FT-IR, UV-vis, DSC, and TGA. Sodium selenate was divided into two parts. One part was denoted as the control, while the other part was defined as The Trivedi Effect® - Biofield Energy Treated sample, which received The Trivedi Effect® Treatment remotely from eighteen renowned Biofield Energy Healers. The PXRD analysis of the treated sample showed the significant alteration of the crystallite size in the range of -16.63% to 42.9% compared with the control sample. However, the average crystallite size of the treated sodium selenate was increased by 1.01% compared with the control sample. The particle sizes d10, d50, and d90 values of the treated sample were significantly decreased by 6.14%, 16.56%, and 18.82%, respectively compared with the control sample. Consequently, the surface area of the treated sample was significantly increased by 10.52% compared with the control sample. Both control and treated FT-IR spectra indicated the presence of sharp and strong absorption bands at 888 and 887 cm-1, respectively due to the Se=O stretching. The UV-vis spectroscopic analysis displayed that the wavelength for the maximum absorbance of the control and treated sodium selenate were at 204.8 and 204.9 nm, respectively. The TGA of the control and treated samples exhibited two steps of thermal degradation, and the total weight loss was slightly increased by 1.16% in the treated sample compared with the control sample. The DSC thermograms showed the latent heat of fusion (ΔH) was significantly elevated by 6.37% in the treated sample compared with the control sample. The current study revealed that The Trivedi Effect® - Energy of Consciousness (Biofield Energy Healing) might generate a new polymorphic form of sodium selenate which could be more soluble, thermally more stable, and higher absorption rate compared with the untreated sample. Hence, The Trivedi Effect® treated sodium selenate would be very useful to design the various forms of nutraceuticals and/or pharmaceutical formulation which might be providing a better therapeutic response against heart disease (i. e. Atherosclerosis), viral diseases (i. e. Hepatitis), infectious diseases (i. e. Dermatitis, Psoriasis), Parkinson’s Disease, Alzheimer’s Disease, etc.

Published in Advances in Bioscience and Bioengineering (Volume 5, Issue 1)
DOI 10.11648/j.abb.20170501.12
Page(s) 12-21
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Biofield Energy Healing Treatment, Biofield Energy Healers, Consciousness Energy Healing, The Trivedi Effect®, Sodium Selenate, PXRD, Particle Size, FT-IR, UV-vis, DSC, TGA

References
[1] Basnayake RST (2001) Inorganic selenium and tellurium speciation in aqueous medium of biological samples, Master of Science (Chemistry), December 2001, Sam Houston State University, Huntsville, Texas, 60 pp.
[2] Soruraddin MH, Heydari R, Puladvand M, Zahedi MM (2011) A new spectrophotometric method for determination of selenium in cosmetic and pharmaceutical preparations after preconcentration with cloud point extraction. Int J Anal Chem 2011: 729651.
[3] UmyFsová D, Vítová M, Doušková I, Bišová K, Hlavová M, Čížková M, Machát J, Doucha J, Zachleder V (2009) Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol 9: 58.
[4] Gonzalez CM, Hernandez J, Peralta-Videa JR, Botez CE, Parsons JG, Gardea-Torresdey JL (2012) Sorption kinetic study of selenite and selenate onto a high and low pressure aged iron oxide nanomaterial. J Hazard Mater 211-212: 138-145.
[5] Sabaty M, Avazeri C, Pignol D, Vermeglio A (2001) Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Environ Microbiol 67: 5122-5126.
[6] Van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Götz J, Ittner LM (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci USA 107: 13888-13893.
[7] Salama RM, Schaalan MF, Elkoussi AA, Khalifa AE (2013) Potential utility of sodium selenate as an adjunct to metformin in treating type II diabetes mellitus in rats: A perspective on protein tyrosine phosphatase. Biomed Res Int 2013: 231378.
[8] Chen P, Wang L, Wang Y, Li S, Shen L, Liu Q, Ni J (2014) Phosphoproteomic profiling of selenate-treated Alzheimer’s disease model cells. PLoS ONE 9: e113307.
[9] https://en.ikipedia.org/wiki/Sodium_selenate.
[10] Krieger RI (2001) Handbook of Pesticide Toxicology, 2nd Edn, Volume 1; Academic Press: San Diego, CA.
[11] Hanson B, Lindblom SD, Loeffler ML, Pilon-Smits E (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytologist 162: 655-662.
[12] Haug A, Graham RD, Christophersen OA, Lyons GH (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis 19: 209-228.
[13] Rubik B (2002) The biofield hypothesis: Its biophysical basis and role in medicine. J Altern Complement Med 8: 703-717.
[14] Rivera-Ruiz M, Cajavilca C, Varon J (2008) Einthoven's string galvanometer: The first electrocardiograph. Tex Heart Inst J 35: 174-178.
[15] Nemeth L (2008) Energy and biofield therapies in practice. Beginnings 28: 4-5.
[16] Koithan M (2009) Introducing complementary and alternative therapies. J Nurse Pract 5: 18-20.
[17] Trivedi MK, Branton A, Trivedi D, Nayak G, Panda P, Jana S (2016) Isotopic abundance ratio analysis of 1, 2, 3-trimethoxybenzene (TMB) after biofield energy treatment (The Trivedi Effect®) using gas chromatography-mass spectrometry. American Journal of Applied Chemistry 4: 132-140.
[18] Trivedi MK, Branton A, Trivedi D, Nayak G, Sethi KK, Jana S (2016) Gas chromatography-mass spectrometry based isotopic abundance ratio analysis of biofield energy treated methyl-2-napthylether (Nerolin). American Journal of Physical Chemistry 5: 80-86.
[19] Trivedi MK, Branton A, Trivedi D, Nayak G, Sethi KK, Jana S (2016) Evaluation of isotopic abundance ratio in biofield energy treated nitrophenol derivatives using gas chromatography-mass spectrometry. American Journal of Chemical Engineering 4. 68-77.
[20] Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Spectroscopic characterization of disulfiram and nicotinic acid after biofield treatment. J Anal Bioanal Tech 6: 265.
[21] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Effect of biofield treatment on spectral properties of paracetamol and piroxicam. Chem Sci J 6: 98.
[22] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Spectroscopic characterization of biofield treated metronidazole and tinidazole. Med chem 5: 340-344.
[23] Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Mishra RK, Jana S (2015) Physicochemical characterization of biofield treated calcium carbonate powder. American Journal of Health Research 3: 368-375.
[24] Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Physical, atomic and thermal properties of biofield treated lithium powder. J Adv Chem Eng 5. 136.
[25] Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Spectroscopic characterization of disodium hydrogen orthophosphate and sodium nitrate after biofield treatment. J Chromatogr Sep Tech 6: 282.
[26] Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Fourier transform infrared and ultraviolet-visible spectroscopic characterization of ammonium acetate and ammonium chloride: An impact of biofield treatment. Mod Chem appl 3. 163.
[27] Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Impact of biofield treatment on spectroscopic and physicochemical properties of p-nitroaniline. Insights in Analytical Electrochemistry 1: 1-8.
[28] Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) In vitro evaluation of biofield treatment on Enterobacter cloacae: Impact on antimicrobial susceptibility and biotype. J Bacteriol Parasitol 6. 241.
[29] Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) Evaluation of biofield modality on viral load of Hepatitis B and C viruses. J Antivir Antiretrovir 7. 083-088.
[30] Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Improved susceptibility pattern of antimicrobials using vital energy treatment on Shigella sonnei. American Journal of Internal Medicine 3. 231-237.
[31] Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Morphological characterization, quality, yield and DNA fingerprinting of biofield treated alphonso mango (Mangifera indica L.). Journal of Food and Nutrition Sciences 3: 245-250.
[32] Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Evaluation of plant growth regulator, immunity and DNA fingerprinting of biofield treated mustard seeds (Brassica juncea). Agriculture, Forestry and Fisheries 4: 269-274.
[33] Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Physicochemical and spectroscopic characterization of biofield treated gerbera multiplication medium. Plant 3: 57-63.
[34] Trivedi MK, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Characterization of physical, thermal and spectral properties of Biofield Treated date palm callus initiation medium. International Journal of Nutrition and Food Sciences 4: 660-668.
[35] Trivedi MK, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Comparative physicochemical evaluation of biofield treated phosphate buffer saline and hanks balanced salt medium. American Journal of BioScience 3. 267-277.
[36] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Evaluation of phenotyping and genotyping characterization of Serratia marcescens after biofield treatment. J Mol Genet Med 9: 179.
[37] Trivedi MK, Branton A, Trivedi D, Nayak G, Charan S, Jana S (2015) Phenotyping and 16S rDNA analysis after biofield treatment on Citrobacter braakii: A urinary pathogen. J Clin Med Genom 3: 129.
[38] Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) The potential impact of biofield treatment on human brain tumor cells: A time-lapse video microscopy. J Integr Oncol 4. 141.
[39] Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) In vitro evaluation of biofield treatment on cancer biomarkers involved in endometrial and prostate cancer cell lines. J Cancer Sci Ther 7. 253-257.
[40] Chereson R (2009) Bioavailability, bioequivalence, and drug selection. In: Makoid CM, Vuchetich PJ, Banakar UV (Eds) Basic pharmacokinetics (1st Edn) Pharmaceutical Press, London.
[41] Blagden N, de Matas M, Gavan PT, York P (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59: 617-630.
[42] Trivedi MK, Mohan TRR (2016) Biofield energy signals, energy transmission and neutrinos. American Journal of Modern Physics 5: 172-176.
[43] Langford JI, Wilson AJC (1978) Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J Appl Cryst 11: 102-113.
[44] Inoue M, Hirasawa I (2013) The relationship between crystal morphology and XRD peak intensity on CaSO4.2H2O. J Crystal Growth 380: 169-175.
[45] Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louër D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) Size-strain line-broadening analysis of the ceria round-robin sample. J Appl Cryst 37: 911-924.
[46] Sun J, Wang F, Sui Y, She Z, Zhai W, Wang C, Deng Y (2012) Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals. Int J Nanomed 7: 5733-5744.
[47] Dabhade VV, Tallapragada RMR, Trivedi MK (2009) Effect of external energy on the atomic, crystalline, and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32. 471-479.
[48] Martin AN, Patrick JS (2006) Martin's physical pharmacy and pharmaceutical sciences: Physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Phila: Lippincott Williams and Wilkins.
[49] http://www.kinetics.nsc.ru/chichinin/books/spectroscopy/Stuart04.pdf.
[50] Rajasree RSR, Gayathri S (2015) Extracellular biosynthesis of selenium nanoparticles using some species of Lactobacillus. Indian J Geo-Marine Sci 43. 766-775.
[51] Coates J (2000) Interpretation of infrared spectra, a practical approach in encyclopedia of analytical chemistry. John Wiley & Sons Ltd., Chichester.
[52] Zare B, Babaie S, Setayesh N, Shahverdi AR (2013) Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J 1: 13-19.
[53] Fathi E (2013) Investigation of the effect of sodium selenate on acetylcholinesterase activity under extremely low frequency electromagnetic field. Journal of Biology and Life Science 4. 41-52.
[54] Hesse M, Meier H, Zeeh B (1997) Spectroscopic methods in organic chemistry, Georg Thieme Verlag Stuttgart, New York.
[55] Troy DB, Beringer P (2006) Remington: The science and practice of pharmacy: Instrumental method of analysis.21st Edition, Chapter 34.
Cite This Article
  • APA Style

    Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Cathryn Dawn Nykvist, et al. (2017). Evaluation of the Physicochemical, Spectral, and Thermal Properties of Sodium Selenate Treated with the Energy of Consciousness (The Trivedi Effect®). Advances in Bioscience and Bioengineering, 5(1), 12-21. https://doi.org/10.11648/j.abb.20170501.12

    Copy | Download

    ACS Style

    Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak; Cathryn Dawn Nykvist, et al. Evaluation of the Physicochemical, Spectral, and Thermal Properties of Sodium Selenate Treated with the Energy of Consciousness (The Trivedi Effect®). Adv. BioSci. Bioeng. 2017, 5(1), 12-21. doi: 10.11648/j.abb.20170501.12

    Copy | Download

    AMA Style

    Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Cathryn Dawn Nykvist, et al. Evaluation of the Physicochemical, Spectral, and Thermal Properties of Sodium Selenate Treated with the Energy of Consciousness (The Trivedi Effect®). Adv BioSci Bioeng. 2017;5(1):12-21. doi: 10.11648/j.abb.20170501.12

    Copy | Download

  • @article{10.11648/j.abb.20170501.12,
      author = {Mahendra Kumar Trivedi and Alice Branton and Dahryn Trivedi and Gopal Nayak and Cathryn Dawn Nykvist and Celine Lavelle and Daniel Paul Przybylski and Dianne Heather Vincent and Dorothy Felger and Douglas Jay Konersman and Elizabeth Ann Feeney and Jay Anthony Prague and Joanne Lydia Starodub and Karan Rasdan and Karen Mie Strassman and Leonid Soboleff and Maire Anne Mayne and Mary M. Keesee and Padmanabha Narayana Pillai and Pamela Clarkson Ansley and Ronald David Schmitz and Sharyn Marie Sodomora and Kalyan Kumar Sethi and Parthasarathi Panda and Snehasis Jana},
      title = {Evaluation of the Physicochemical, Spectral, and Thermal Properties of Sodium Selenate Treated with the Energy of Consciousness (The Trivedi Effect®)},
      journal = {Advances in Bioscience and Bioengineering},
      volume = {5},
      number = {1},
      pages = {12-21},
      doi = {10.11648/j.abb.20170501.12},
      url = {https://doi.org/10.11648/j.abb.20170501.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.abb.20170501.12},
      abstract = {Sodium selenate is a common ingredient in nutraceuticals/pharmaceuticals as a source of selenium. The objective of the current study was to evaluate the impact of The Trivedi Effect® - Energy of Consciousness (Biofield Energy Healing) on the physicochemical, spectral, and thermal properties of The Trivedi Effect® Treated sodium selenate using various analytical methods such as PXRD, PSD, FT-IR, UV-vis, DSC, and TGA. Sodium selenate was divided into two parts. One part was denoted as the control, while the other part was defined as The Trivedi Effect® - Biofield Energy Treated sample, which received The Trivedi Effect® Treatment remotely from eighteen renowned Biofield Energy Healers. The PXRD analysis of the treated sample showed the significant alteration of the crystallite size in the range of -16.63% to 42.9% compared with the control sample. However, the average crystallite size of the treated sodium selenate was increased by 1.01% compared with the control sample. The particle sizes d10, d50, and d90 values of the treated sample were significantly decreased by 6.14%, 16.56%, and 18.82%, respectively compared with the control sample. Consequently, the surface area of the treated sample was significantly increased by 10.52% compared with the control sample. Both control and treated FT-IR spectra indicated the presence of sharp and strong absorption bands at 888 and 887 cm-1, respectively due to the Se=O stretching. The UV-vis spectroscopic analysis displayed that the wavelength for the maximum absorbance of the control and treated sodium selenate were at 204.8 and 204.9 nm, respectively. The TGA of the control and treated samples exhibited two steps of thermal degradation, and the total weight loss was slightly increased by 1.16% in the treated sample compared with the control sample. The DSC thermograms showed the latent heat of fusion (ΔH) was significantly elevated by 6.37% in the treated sample compared with the control sample. The current study revealed that The Trivedi Effect® - Energy of Consciousness (Biofield Energy Healing) might generate a new polymorphic form of sodium selenate which could be more soluble, thermally more stable, and higher absorption rate compared with the untreated sample. Hence, The Trivedi Effect® treated sodium selenate would be very useful to design the various forms of nutraceuticals and/or pharmaceutical formulation which might be providing a better therapeutic response against heart disease (i. e. Atherosclerosis), viral diseases (i. e. Hepatitis), infectious diseases (i. e. Dermatitis, Psoriasis), Parkinson’s Disease, Alzheimer’s Disease, etc.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Evaluation of the Physicochemical, Spectral, and Thermal Properties of Sodium Selenate Treated with the Energy of Consciousness (The Trivedi Effect®)
    AU  - Mahendra Kumar Trivedi
    AU  - Alice Branton
    AU  - Dahryn Trivedi
    AU  - Gopal Nayak
    AU  - Cathryn Dawn Nykvist
    AU  - Celine Lavelle
    AU  - Daniel Paul Przybylski
    AU  - Dianne Heather Vincent
    AU  - Dorothy Felger
    AU  - Douglas Jay Konersman
    AU  - Elizabeth Ann Feeney
    AU  - Jay Anthony Prague
    AU  - Joanne Lydia Starodub
    AU  - Karan Rasdan
    AU  - Karen Mie Strassman
    AU  - Leonid Soboleff
    AU  - Maire Anne Mayne
    AU  - Mary M. Keesee
    AU  - Padmanabha Narayana Pillai
    AU  - Pamela Clarkson Ansley
    AU  - Ronald David Schmitz
    AU  - Sharyn Marie Sodomora
    AU  - Kalyan Kumar Sethi
    AU  - Parthasarathi Panda
    AU  - Snehasis Jana
    Y1  - 2017/03/07
    PY  - 2017
    N1  - https://doi.org/10.11648/j.abb.20170501.12
    DO  - 10.11648/j.abb.20170501.12
    T2  - Advances in Bioscience and Bioengineering
    JF  - Advances in Bioscience and Bioengineering
    JO  - Advances in Bioscience and Bioengineering
    SP  - 12
    EP  - 21
    PB  - Science Publishing Group
    SN  - 2330-4162
    UR  - https://doi.org/10.11648/j.abb.20170501.12
    AB  - Sodium selenate is a common ingredient in nutraceuticals/pharmaceuticals as a source of selenium. The objective of the current study was to evaluate the impact of The Trivedi Effect® - Energy of Consciousness (Biofield Energy Healing) on the physicochemical, spectral, and thermal properties of The Trivedi Effect® Treated sodium selenate using various analytical methods such as PXRD, PSD, FT-IR, UV-vis, DSC, and TGA. Sodium selenate was divided into two parts. One part was denoted as the control, while the other part was defined as The Trivedi Effect® - Biofield Energy Treated sample, which received The Trivedi Effect® Treatment remotely from eighteen renowned Biofield Energy Healers. The PXRD analysis of the treated sample showed the significant alteration of the crystallite size in the range of -16.63% to 42.9% compared with the control sample. However, the average crystallite size of the treated sodium selenate was increased by 1.01% compared with the control sample. The particle sizes d10, d50, and d90 values of the treated sample were significantly decreased by 6.14%, 16.56%, and 18.82%, respectively compared with the control sample. Consequently, the surface area of the treated sample was significantly increased by 10.52% compared with the control sample. Both control and treated FT-IR spectra indicated the presence of sharp and strong absorption bands at 888 and 887 cm-1, respectively due to the Se=O stretching. The UV-vis spectroscopic analysis displayed that the wavelength for the maximum absorbance of the control and treated sodium selenate were at 204.8 and 204.9 nm, respectively. The TGA of the control and treated samples exhibited two steps of thermal degradation, and the total weight loss was slightly increased by 1.16% in the treated sample compared with the control sample. The DSC thermograms showed the latent heat of fusion (ΔH) was significantly elevated by 6.37% in the treated sample compared with the control sample. The current study revealed that The Trivedi Effect® - Energy of Consciousness (Biofield Energy Healing) might generate a new polymorphic form of sodium selenate which could be more soluble, thermally more stable, and higher absorption rate compared with the untreated sample. Hence, The Trivedi Effect® treated sodium selenate would be very useful to design the various forms of nutraceuticals and/or pharmaceutical formulation which might be providing a better therapeutic response against heart disease (i. e. Atherosclerosis), viral diseases (i. e. Hepatitis), infectious diseases (i. e. Dermatitis, Psoriasis), Parkinson’s Disease, Alzheimer’s Disease, etc.
    VL  - 5
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Global, Inc., Henderson, NV, USA

  • Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

  • Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

  • Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

  • Sections