| Peer-Reviewed

Modelling a Structure of a Fuzzy Data Warehouse

Received: 12 April 2017     Accepted: 22 April 2017     Published: 28 June 2017
Views:       Downloads:
Abstract

In this article, we represent the structure of a fuzzy data warehouse. The elements of classification to build the fuzzy data warehouse are presented through the three following tasks: identification of the target-attribute, identification of linguistic terms and definition of membership functions. From these tasks, we present an approach of a fuzzy data warehouse modelling. This allows us to integrate fuzzy logic without affecting the data warehouse base.

Published in Applied Engineering (Volume 1, Issue 2)
DOI 10.11648/j.ae.20170102.12
Page(s) 48-56
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Target Attribute, Class Membership Attribute, Membership Degree, Membership Degree Attribute,Fuzzy Classification Table, Fuzzy Membership Table

References
[1] Zadeh, L. A. (1973). The Concept of a Linguistic Variable and its Application to Approximate Reasonning-1, Informations Sciences Vol.8/3, p.199-249.
[2] Dubois, D., Prade, H.(1985). Théories des possibilités, Applications à la représentation des connaissances en informatique, Masson, 2e édition. Academic Press, NewYork.
[3] Zadeh, L. A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility, Fuzzy Sets and Systems Vol.1, 3-28.
[4] Buckley, J. J. (1989). Solving Possibilistic Linear Programming Problems, Fuzzy Sets and Systems Vol. 31, 329-341.
[5] Kaufmann (1977). Introductionàl a théorie des sous-ensembles flous, A l'usage des Ingénieurs, (Fuzzy Sets Theory), Tome 1, Éléments théoriques de base, Masson, Paris.
[6] Klir, G. J., Folger, T. A. (1988). Fuzzy Sets, Uncertainty, and Information, Prentice-Hall, Englewood Cliffs, NJ.
[7] Buckley, J. J. (1988a). Possibility and Necessity in Optimization, Furzy Sets and Systems Vol.25, 1-13.
[8] Pedersen, T. B., Jensen, C. S., and Dyreseon C. E.. Supporting Imprecision in Multidimensional Data bases Using Granularities. Eleventh International Conference on Scientific and Statistical Database Management, 1999.
[9] Inmon W., Building the data warehouse, John Wiley &Sons, 1996.
[10] Kimball R., The Data warehouse Toolkit, John Wiley & Sons, 1996.
[11] Jarke M., Lenzerini M., Vassiliou Y., Vassiliadis P., Fundamentals of Data Warehouses, Springer-Verlag, 1998.
[12] Sapir, L., Shmilovici A., and Rokach, L.. A Methodology for the Design of a Fuzzy Data Warehouse. InIntelligent Systems, 2008. IS’08.4th Internationa lIEEE Conference, volume 1, 2008.
[13] Inmon W., “The operational Data Store”, White Paper, www. billinmon.com/library/whiteprs/earlywp/ttods.pdf,2000.
[14] Codd E., Codd S., Salley C., Providing OLAP( On-Line Analytical Processing ) to User-Analysts: An IT Mandate, Report, Arbor Soft ware White Paper,1993.
[15] L. A. Zadeh. The Concept of a Linguistic Variable and its Applicationt of Approximate Reasoning–PartI. Information Science, (8): 199-249, 1975.
[16] D. Hareland B. Rumpe. Meaningful Modeling: What’s the Semantics of "Semantics"? Computer, 37(10): 64–72, October 2004.
[17] Ralph Kimball and Joe Caserta. The Data Warehouse ET L Tool kit. Wiley Publishing, Inc., 2004.
[18] K. V. N. N. Pavan Kumar, P. Radha Krishna, and Supriya Kumar The Fuzzy OLAP Cube for Qualitative Analysis. InIntelligent Sensing and Information Processing, pages 290–295, 2005.
[19] Heiko Schepperle, Andreas Merkel, and Alexander Haag. Erhaltvon Imperfektion ineinem Data Warehouse. Internationales Symposium: Data-Warehouse-Systeme and Knowledge - Discovery, 2004.
Cite This Article
  • APA Style

    Alain Kuyunsa Mayu, Nathanael Kasoro Mulenda, Rostin Mabela Matendo. (2017). Modelling a Structure of a Fuzzy Data Warehouse. Applied Engineering, 1(2), 48-56. https://doi.org/10.11648/j.ae.20170102.12

    Copy | Download

    ACS Style

    Alain Kuyunsa Mayu; Nathanael Kasoro Mulenda; Rostin Mabela Matendo. Modelling a Structure of a Fuzzy Data Warehouse. Appl. Eng. 2017, 1(2), 48-56. doi: 10.11648/j.ae.20170102.12

    Copy | Download

    AMA Style

    Alain Kuyunsa Mayu, Nathanael Kasoro Mulenda, Rostin Mabela Matendo. Modelling a Structure of a Fuzzy Data Warehouse. Appl Eng. 2017;1(2):48-56. doi: 10.11648/j.ae.20170102.12

    Copy | Download

  • @article{10.11648/j.ae.20170102.12,
      author = {Alain Kuyunsa Mayu and Nathanael Kasoro Mulenda and Rostin Mabela Matendo},
      title = {Modelling a Structure of a Fuzzy Data Warehouse},
      journal = {Applied Engineering},
      volume = {1},
      number = {2},
      pages = {48-56},
      doi = {10.11648/j.ae.20170102.12},
      url = {https://doi.org/10.11648/j.ae.20170102.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ae.20170102.12},
      abstract = {In this article, we represent the structure of a fuzzy data warehouse. The elements of classification to build the fuzzy data warehouse are presented through the three following tasks: identification of the target-attribute, identification of linguistic terms and definition of membership functions. From these tasks, we present an approach of a fuzzy data warehouse modelling. This allows us to integrate fuzzy logic without affecting the data warehouse base.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Modelling a Structure of a Fuzzy Data Warehouse
    AU  - Alain Kuyunsa Mayu
    AU  - Nathanael Kasoro Mulenda
    AU  - Rostin Mabela Matendo
    Y1  - 2017/06/28
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ae.20170102.12
    DO  - 10.11648/j.ae.20170102.12
    T2  - Applied Engineering
    JF  - Applied Engineering
    JO  - Applied Engineering
    SP  - 48
    EP  - 56
    PB  - Science Publishing Group
    SN  - 2994-7456
    UR  - https://doi.org/10.11648/j.ae.20170102.12
    AB  - In this article, we represent the structure of a fuzzy data warehouse. The elements of classification to build the fuzzy data warehouse are presented through the three following tasks: identification of the target-attribute, identification of linguistic terms and definition of membership functions. From these tasks, we present an approach of a fuzzy data warehouse modelling. This allows us to integrate fuzzy logic without affecting the data warehouse base.
    VL  - 1
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Faculty of Sciences, Regional Center for Doctoral Education in Mathematics and Computer Sciences, University of Kinshasa, Kinshasa, D. R. Congo

  • Faculty of Sciences, Department of Mathematics and Computer Sciences, University of Kinshasa, Kinshasa, D. R. Congo

  • Faculty of Sciences, Department of Mathematics and Computer Sciences, University of Kinshasa, Kinshasa, D. R. Congo

  • Sections