In this article, we represent the structure of a fuzzy data warehouse. The elements of classification to build the fuzzy data warehouse are presented through the three following tasks: identification of the target-attribute, identification of linguistic terms and definition of membership functions. From these tasks, we present an approach of a fuzzy data warehouse modelling. This allows us to integrate fuzzy logic without affecting the data warehouse base.
Published in | Applied Engineering (Volume 1, Issue 2) |
DOI | 10.11648/j.ae.20170102.12 |
Page(s) | 48-56 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Target Attribute, Class Membership Attribute, Membership Degree, Membership Degree Attribute,Fuzzy Classification Table, Fuzzy Membership Table
[1] | Zadeh, L. A. (1973). The Concept of a Linguistic Variable and its Application to Approximate Reasonning-1, Informations Sciences Vol.8/3, p.199-249. |
[2] | Dubois, D., Prade, H.(1985). Théories des possibilités, Applications à la représentation des connaissances en informatique, Masson, 2e édition. Academic Press, NewYork. |
[3] | Zadeh, L. A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility, Fuzzy Sets and Systems Vol.1, 3-28. |
[4] | Buckley, J. J. (1989). Solving Possibilistic Linear Programming Problems, Fuzzy Sets and Systems Vol. 31, 329-341. |
[5] | Kaufmann (1977). Introductionàl a théorie des sous-ensembles flous, A l'usage des Ingénieurs, (Fuzzy Sets Theory), Tome 1, Éléments théoriques de base, Masson, Paris. |
[6] | Klir, G. J., Folger, T. A. (1988). Fuzzy Sets, Uncertainty, and Information, Prentice-Hall, Englewood Cliffs, NJ. |
[7] | Buckley, J. J. (1988a). Possibility and Necessity in Optimization, Furzy Sets and Systems Vol.25, 1-13. |
[8] | Pedersen, T. B., Jensen, C. S., and Dyreseon C. E.. Supporting Imprecision in Multidimensional Data bases Using Granularities. Eleventh International Conference on Scientific and Statistical Database Management, 1999. |
[9] | Inmon W., Building the data warehouse, John Wiley &Sons, 1996. |
[10] | Kimball R., The Data warehouse Toolkit, John Wiley & Sons, 1996. |
[11] | Jarke M., Lenzerini M., Vassiliou Y., Vassiliadis P., Fundamentals of Data Warehouses, Springer-Verlag, 1998. |
[12] | Sapir, L., Shmilovici A., and Rokach, L.. A Methodology for the Design of a Fuzzy Data Warehouse. InIntelligent Systems, 2008. IS’08.4th Internationa lIEEE Conference, volume 1, 2008. |
[13] | Inmon W., “The operational Data Store”, White Paper, www. billinmon.com/library/whiteprs/earlywp/ttods.pdf,2000. |
[14] | Codd E., Codd S., Salley C., Providing OLAP( On-Line Analytical Processing ) to User-Analysts: An IT Mandate, Report, Arbor Soft ware White Paper,1993. |
[15] | L. A. Zadeh. The Concept of a Linguistic Variable and its Applicationt of Approximate Reasoning–PartI. Information Science, (8): 199-249, 1975. |
[16] | D. Hareland B. Rumpe. Meaningful Modeling: What’s the Semantics of "Semantics"? Computer, 37(10): 64–72, October 2004. |
[17] | Ralph Kimball and Joe Caserta. The Data Warehouse ET L Tool kit. Wiley Publishing, Inc., 2004. |
[18] | K. V. N. N. Pavan Kumar, P. Radha Krishna, and Supriya Kumar The Fuzzy OLAP Cube for Qualitative Analysis. InIntelligent Sensing and Information Processing, pages 290–295, 2005. |
[19] | Heiko Schepperle, Andreas Merkel, and Alexander Haag. Erhaltvon Imperfektion ineinem Data Warehouse. Internationales Symposium: Data-Warehouse-Systeme and Knowledge - Discovery, 2004. |
APA Style
Alain Kuyunsa Mayu, Nathanael Kasoro Mulenda, Rostin Mabela Matendo. (2017). Modelling a Structure of a Fuzzy Data Warehouse. Applied Engineering, 1(2), 48-56. https://doi.org/10.11648/j.ae.20170102.12
ACS Style
Alain Kuyunsa Mayu; Nathanael Kasoro Mulenda; Rostin Mabela Matendo. Modelling a Structure of a Fuzzy Data Warehouse. Appl. Eng. 2017, 1(2), 48-56. doi: 10.11648/j.ae.20170102.12
@article{10.11648/j.ae.20170102.12, author = {Alain Kuyunsa Mayu and Nathanael Kasoro Mulenda and Rostin Mabela Matendo}, title = {Modelling a Structure of a Fuzzy Data Warehouse}, journal = {Applied Engineering}, volume = {1}, number = {2}, pages = {48-56}, doi = {10.11648/j.ae.20170102.12}, url = {https://doi.org/10.11648/j.ae.20170102.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ae.20170102.12}, abstract = {In this article, we represent the structure of a fuzzy data warehouse. The elements of classification to build the fuzzy data warehouse are presented through the three following tasks: identification of the target-attribute, identification of linguistic terms and definition of membership functions. From these tasks, we present an approach of a fuzzy data warehouse modelling. This allows us to integrate fuzzy logic without affecting the data warehouse base.}, year = {2017} }
TY - JOUR T1 - Modelling a Structure of a Fuzzy Data Warehouse AU - Alain Kuyunsa Mayu AU - Nathanael Kasoro Mulenda AU - Rostin Mabela Matendo Y1 - 2017/06/28 PY - 2017 N1 - https://doi.org/10.11648/j.ae.20170102.12 DO - 10.11648/j.ae.20170102.12 T2 - Applied Engineering JF - Applied Engineering JO - Applied Engineering SP - 48 EP - 56 PB - Science Publishing Group SN - 2994-7456 UR - https://doi.org/10.11648/j.ae.20170102.12 AB - In this article, we represent the structure of a fuzzy data warehouse. The elements of classification to build the fuzzy data warehouse are presented through the three following tasks: identification of the target-attribute, identification of linguistic terms and definition of membership functions. From these tasks, we present an approach of a fuzzy data warehouse modelling. This allows us to integrate fuzzy logic without affecting the data warehouse base. VL - 1 IS - 2 ER -