| Peer-Reviewed

Short Communication: Requiring Reverse Osmosis Membranes Modifications – An Overview

Received: 18 June 2017     Accepted: 27 June 2017     Published: 31 July 2017
Views:       Downloads:
Abstract

Do really reverse osmosis (RO) membranes need modification to cover their disadvantages or enhance their efficiency? Are there any defects in RO membranes manufacturing that require modification? These questions are discussed here in this short review. Through the world, there are thousands of patents, publications, and PhD theses dealing with surface modification and grafting of RO membranes. This growing phenomenon should attract the attention of the scientific community for technologic and economic reasons. Due to the increasing water pollution levels, which overpassed the RO membranes capacities, there is an urgent need to manufacture RO membranes, with multidisciplinary characteristics and high performance regarding both salts removal and fouling resistance, before sending them to the market and avoiding to think to their following modification.

Published in American Journal of Chemical Engineering (Volume 5, Issue 4)
DOI 10.11648/j.ajche.20170504.15
Page(s) 81-88
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Reverse Osmosis (RO), Membrane Modification, Desalination, Water/Wastewater Treatment, Membrane Fouling

References
[1] D. Ghernaout, The best available technology of water/wastewater treatment and seawater desalination: Simulation of the open sky seawater distillation, Green Sust. Chem. 3 (2013) 68-88.
[2] D. Ghernaout, B. Ghernaout, M. W. Naceur, Embodying the chemical water treatment in the green chemistry – A review, Desalination 271 (2011) 1-10.
[3] N. Akther, A. Sodiq, A. Giwa, S. Daer, H. A. Arafat, S. W. Hasan, Recent advancements in forward osmosis desalination: A review, Chem. Eng. J. 281 (2015) 502-522.
[4] A. Saraf, Impact of poly vinyl alcohol on support layer of commercial thin film composite membranes: Enabling use of reverse osmosis membranes in forward osmosis, Master Thesis, Arizona State University, 2012.
[5] A. Boucherit, S. Moulay, D. Ghernaout, A. I. Al-Ghonamy, B. Ghernaout, M. W. Naceur, N. Ait Messaoudene, M. Aichouni, A. A. Mahjoubi, N. A. Elboughdiri, New trends in disinfection by-products formation upon water treatment, J. Res. Develop. Chem. (2015), Article ID 628833, doi: 10.5171/2015.628833.
[6] L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: Water sources, technology, and today’s challenges, Water Res. 43 (2009) 2317-2348.
[7] A. Subramani, J. G. Jacangelo, Treatment technologies for reverse osmosis concentrate volume minimization: A review, Sep. Purif. Technol. 122 (2014) 472-489.
[8] A. C. Sagle, E. M. Van Wagner, H. Ju, B. D. McCloskey, B. D. Freeman, M. M. Sharma, PEG-coated reverse osmosis membranes: Desalination properties and fouling resistance, J. Membr. Sci. 340 (2009) 92-108.
[9] M. A. Alghoul, P. Poovanaesvaran, K. Sopian, M. Y. Sulaiman, Review of brackish water reverse osmosis (BWRO) system designs, Renew. Sust. Energ. Rev. 13 (2009) 2661-2667.
[10] K. J. Moses, Surface nanostructured reverse osmosis membranes, PhD Thesis, University of California, Los Angeles, 2016.
[11] K. Karakulski, M. Gryta, A. W. Morawski, Pilot plant studies on the removal of trihalomethanes by composite reverse osmosis membranes, Desalination 140 (2001) 227-234.
[12] A. Peyki, A. Rahimpour, M. Jahanshahi, Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic SiO2 nanoparticles, Desalination 368 (2015) 152-158.
[13] D. Saeki, S. Nagao, I. Sawada, Y. Ohmukai, T. Maruyama, H. Matsuyama, Development of antibacterial polyamide reverse osmosis membrane modified with a covalently immobilized enzyme, J. Membr. Sci. 428 (2013) 403-409.
[14] M. G. Buonomenna, Nano-enhanced reverse osmosis membranes, Desalination 314 (2013) 73-88.
[15] L. Zhao, P. C.-Y. Chang, W. S. W. Ho, High-flux reverse osmosis membranes incorporated with hydrophilic additives for brackish water desalination, Desalination 308 (2013) 225-232.
[16] S. F. E. Boerlage, M. D. Kennedy, I. Bremere, G. J. Witkamp, J. P. Van der Hoek, J. C. Schippers, The scaling potential of barium sulphate in reverse osmosis systems, J. Membr. Sci. 197 (2002) 251-268.
[17] B. Mi, C. L. Eaton, J.-H. Kim, C. K. Colvin, J. C. Lozier, B. J. Mariñas, Removal of biological and non-biological viral surrogates by spiral-wound reverse osmosis membrane elements with intact and compromised integrity, Water Res. 38 (2004) 3821-3832.
[18] C. F. Wan, T.-S. Chung, Energy recovery by pressure retarded osmosis (PRO) in SWRO-PRO integrated processes, Appl. Energ. 162 (2016) 687-698.
[19] A. Zirehpour, A. Rahimpour, F. Seyedpour, M. Jahanshahi, Developing new CTA/CA-based membrane containing hydrophilic nanoparticles to enhance the forward osmosis desalination, Desalination 371 (2015) 46-57.
[20] T. Gullinkala, B. Digman, C. Gorey, R. Hausman, I. C. Escobar, Desalination: Reverse Osmosis and Membrane Distillation (Ch. 4), Sustainability Science and Engineering (Vol. 2), Elsevier B. V., 2010.
[21] A. Villafafila, I. M. Mujtabab, Fresh water by reverse osmosis based desalination: simulation and optimization, Desalination 155 (2003) 1-13.
[22] E. Tian, X. Wang, Y. Zhao, Y. Ren, Middle support layer formation and structure in relation to performance of three-tier thin film composite forward osmosis membrane, Desalination (2017), http://dx.doi.org/10.1016/j.desal.2017.02.014
[23] L. Song, J. Y. Hu, S. L. Ong, W.J. Ng, M. Elimelech, M. Wilf, Performance limitation of the full-scale reverse osmosis process, J. Membr. Sci. 214 (2003) 239-244.
[24] B. Cai, Q. T. Nguyen, J. M. Valleton, C. Gao, In situ reparation of defects on the skin layer of reverse osmosis cellulose ester membranes for pervaporation purposes, J. Membr. Sci. 216 (2003) 165-175.
[25] J. F. Koprivnjak, E. M. Perdue, P. H. Pfromm, Coupling reverse osmosis with electrodialysis to isolate natural organic matter from fresh waters, Water Res. 40 (2006) 3385-3392.
[26] M. Huang, Y. Chen, C.-H. Huang, P. Sun, J. Crittenden, Rejection and adsorption of trace pharmaceuticals by coating a forward osmosis membrane with TiO2, Chem. Eng. J. 279 (2015) 904-911.
[27] S. Phuntsho, S. Sahebi, T. Majeed, F. Lotfi, J. E. Kim, H. K. Shon, Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process, Chem. Eng. J. 231 (2013) 484-496.
[28] S. Azari, L. Zou, Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance, J. Membr. Sci. 401-402 (2012) 68-75.
[29] J. Ayyavoo, T. P. N. Nguyen, B.-M. Jun, I.-C. Kim, Y.-N. Kwon, Protection of polymeric membranes with antifouling surfacing via surface modifications, Colloid Surface A 506 (2016) 190-201.
[30] L. Zhao, Advanced reverse osmosis membranes for desalination and inorganic/polymer composite membranes for CO2 capture, PhD Thesis, The Ohio State University, 2014.
[31] C. Y. Tang, Y.-N. Kwon, J. O. Leckie, Probing the nano- and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements, J. Membr. Sci. 287 (2007) 146-156.
[32] H. Choi, Y. Jung, S. Han, T. Tak, Y.-N. Kwon, Surface modification of SWRO membranes using hydroxyl poly (oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine, J. Membr. Sci. 486 (2015) 97-105.
[33] Q. Wang, X. Gao, Y. Yang, Y. Zhang, J. Wang, Y. Xu, Z. Sun, X. Wang, C. Gao, Water flux surge of thin film composite forward osmosis membrane via simple prepressing method in spacer-filled channels, J. Taiwan Inst. Chem. Eng. 71 (2017) 260-264.
[34] O. Sanyal, Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment, PhD Thesis, Michigan State University, 2016.
[35] X. Wang, Y. Zhao, B. Yuan, Z. Wang, X. Li, Y. Ren, Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors, Bioresource Technol. 202 (2016) 50-58.
[36] P. Xu, M. Capito, T. Y. Cath, Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate, J. Hazard. Mater. 260 (2013) 885-891.
[37] J. Xu, Z. Wang, X. Wei, S. Yang, J. Wang, S. Wang, The chlorination process of crosslinked aromatic polyamide reverse osmosis membrane: New insights from the study of self-made membrane, Desalination 313 (2013) 145-155.
[38] J. Xu, Z. Wang, L. Yu, J. Wang, S. Wang, A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties, J. Membr. Sci. 435 (2013) 80-91.
[39] K. Rezzadori, J. G. Veneral, J. C. M. Silveira, F. M. Penha, J. C. C. Petrus, P. Prádanos, L. Palacio, A. Hernández, M. Di Luccio, Effect of dense CO2 on polymeric reverse osmosis and nanofiltration membranes and permeation of mixtures of macaubaoil (Acrocomia aculeata) and CO2, J. Membr. Sci. 481 (2015) 195-206.
[40] A. Nguyen, S. Azari, L. Zou, Coating zwitterionic amino acid L-DOPA to increase fouling resistance of forward osmosis membrane, Desalination 312 (2013) 82-87.
[41] M. K. da Silva, I. C. Tessaro, K. Wada, Investigation of oxidative degradation of polyamide reverse osmosis membranes by monochloramine solutions, J. Membr. Sci. 282 (2006) 375-382.
[42] C. F. Wan, B. Li, T. Yang, T.-S. Chung, Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO), Sep. Purif. Technol. 172 (2017) 32-42.
[43] A. Ettori, E. Gaudichet-Maurin, P. Aimar, C. Causserand, Pilot scale study of chlorination-induced transport property changes of a seawater reverse osmosis membrane, Desalination 311 (2013) 24-30.
[44] M. Qasim, N. A. Darwish, S. Sarp, N. Hilal, Water desalination by forward (direct) osmosis phenomenon: A comprehensive review, Desalination 374 (2015) 47-69.
[45] M. Ghanbari, D. Emadzadeh, W. J. Lau, H. Riazi, D. Almasi, A. F. Ismail, Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates, Desalination 377 (2016) 152-162.
[46] K. Jamal, M. A. Khan, M. Kamil, Mathematical modeling of reverse osmosis systems, Desalination 160 (2004) 29-42.
[47] T.-U. Kim, J. E. Drewes, R. S. Summers, G. L. Amy, Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes, Water Res. 41 (2007) 3977-3988.
[48] J. A. López-Ramírez, M. D. Coello Oviedo, J. M. Quiroga Alonso, Comparative studies of reverse osmosis membranes for wastewater reclamation, Desalination 191 (2006) 137-147.
[49] A. Sabir, M. Shafiq, A. Islam, A. Sarwar, M. R. Dilshad, A. Shafeeq, M. T. Z. Butt, T. Jamil, Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis, Carbohyd. Polym. 132 (2015) 589-597.
[50] J. E. Kilduff, S. Mattaraj, A. Wigton, M. Kitis, T. Karanfil, Effects of reverse osmosis isolation on reactivity of naturally occurring dissolved organic matter in physicochemical processes, Water Res. 38 (2004) 1026-1036.
[51] M.-M. Kim, N. H. Lin, G. T. Lewis, Y. Cohen, Surface nano-structuring of reverse osmosis membranes via atmospheric pressure plasma-induced graft polymerization for reduction of mineral scaling propensity, J. Membr. Sci. 354 (2010) 142-149.
[52] S. G. Kim, D. H. Hyeon, J. H. Chun, B.-H. Chun, S. H. Kim, Nanocomposite poly (arylene ether sulfone) reverse osmosis membrane containing functional zeolite nanoparticles for seawater desalination, J. Membr. Sci. 443 (2013) 10-18.
[53] M. Rastgar, A. Shakeri, A. Bozorg, H. Salehi, V. Saadattalab, Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes, Desalination (2017), http://dx.doi.org/10.1016/j.desal.2017.01.040
[54] T. Fujioka, N. Oshima, R. Suzuki, S. J. Khan, A. Roux, Y. Poussade, J. E. Drewes, L. D. Nghiem, Rejection of small and uncharged chemicals of emerging concern by reverse osmosis membranes: The role of free volume space within the active skin layer, Sep. Purif. Technol. 116 (2013) 426-432.
[55] M. F. Gruber, U. Aslak, C. Hélix-Nielsen, Open-source CFD model for optimization of forward osmosis and reverse osmosis membrane modules, Sep. Purif. Technol. 158 (2016) 183-192.
[56] Z. Dabaghian, A. Rahimpour, M. Jahanshahi, Highly porous cellulosic nanocomposite membranes with enhanced performance for forward osmosis desalination, Desalination 381 (2016) 117-125.
[57] G. N. B. Baroña, J. Lim, M. Choi, B. Jung, Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis, Desalination 325 (2013) 138-147.
[58] S. Maruf, Surface patterning of polymeric separation membranes and its influence on the filtration performance, PhD Thesis, University of Colorado, 2014.
[59] Y. Baek, J. Yu, S.-H. Kim, S. Lee, J. Yoon, Effect of surface properties of reverse osmosis membranes on biofouling occurrence under filtration conditions, J. Membr. Sci. 382 (2011) 91-99.
[60] A. Ettori, E. Gaudichet-Maurin, P. Aimar, C. Causserand, Mass transfer properties of chlorinated aromatic polyamide reverse osmosis membranes, Sep. Purif. Technol. 101 (2012) 60-67.
[61] J. Weißbrodt, M. Manthey, B. Ditgens, G. Laufenberg, B. Kunz, Separation of aqueous organic multi-component solutions by reverse osmosis - development of a mass transfer model, Desalination 133 (2001) 65-74.
[62] B. D. McCloskey, H. B. Park, H. Ju, B. W. Rowe, D. J. Miller, B. J. Chun, K. Kin, B. D. Freeman, Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes, Polymer 51 (2010) 3472-3485.
[63] D. Mukherjee, A. Kulkarni, W. N. Gill, Flux enhancement of reverse osmosis membranes by chemical surface modification, J. Membr. Sci. 97 (1994) 231-249.
[64] X. Li, T. Cai, G. L. Amy, T.-S. Chung, Cleaning strategies and membrane flux recovery on anti-fouling membranes for pressure retarded osmosis, J. Membr. Sci. 522 (2017) 116-123.
[65] A. Al-Hajjaj, T. A. Saki, Improving the design stresses of high density polyethylene pipes and vessels used in reverse osmosis desalination plants, J. Saudi Chem. Soc. 14 (2010) 251-256.
[66] A. Tiraferri, Improving the performance and antifouling properties of thin-film composite membranes for water separation technologies, PhD Thesis, Yale University, 2012.
[67] L. Chekli, S. Phuntsho, J. E. Kim, J. Kim, J. Y. Choi, J.-S. Choi, S. Kim, J. H. Kim, S. Hong, J. Sohn, H. K. Shon, A comprehensive review of hybrid forward osmosis systems: Performance, applications and future prospects. J. Membr. Sci. 497 (2016) 430-449.
[68] A. Antony, R. Fudianto, S. Cox, G. Leslie, Assessing the oxidative degradation of polyamide reverse osmosis membrane—Accelerated ageing with hypochlorite exposure, J. Membr. Sci. 347 (2010) 159-164.
[69] P. M. Pardeshi, A. K. Mungray, A. A. Mungray, Polyvinyl chloride and layered double hydroxide composite as a novel substrate material for the forward osmosis membrane, Desalination (2017), http://dx.doi.org/10.1016/j.desal.2017.01.041
[70] R. F. Fibiger, Novel polyamide reverse osmosis membranes, (1987), U.S. Pat. No. 4769148 A, https://www.google.ch/patents/US4769148
[71] I. J. Roh, J.-J. Kim, S. Y. Park, Mechanical properties and reverse osmosis performance of interfacially polymerized polyamide thin films, J. Membr. Sci. 197 (2002) 199-210.
[72] X. Wang, X. Wang, P. Xiao, J. Li, E. Tian, Y. Zhao, Y. Ren, High water permeable free-standing cellulose triacetate/grapheneoxide membrane with enhanced antibiofouling and mechanical properties for forward osmosis, Colloid Surface A 508 (2016) 327-335.
[73] H. Zou, Y. Jin, J. Yang, H. Dai, X. Yu, J. Xu, Synthesis and characterization of thin film composite reverse osmosis membranes via novel interfacial polymerization approach, Sep. Purif. Technol. 72 (2010) 256-262.
[74] L. Shen, S. Xiong, Y. Wang, Graphene oxide incorporated thin-film composite membranes for forward osmosis applications, Chem. Eng. Sci. 143 (2016) 194-205.
[75] L. Shen, X. Zhang, J. Zuo, Y. Wang, Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment, J. Membr. Sci. 534 (2017) 46-58.
[76] W. E. Mickols, Composite membrane with polyalkylene oxide modified polyamide surface, (2001), U. S. Pat. No. 6280853 B1, https://www.google.ch/patents/US6280853?hl=de&cl=en
[77] S. S Manickam, J. R. McCutcheon, Model thin film composite membranes for forward osmosis: Demonstrating the inaccuracy of existing structural parameter models, J. Membr. Sci. 483 (2015) 70-74.
[78] L. Huang, J. T. Arena, J. R. McCutcheon, Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis, J. Membr. Sci. 499 (2016) 352-360.
[79] G. Chen, R. Liu, H. K. Shon, Y. Wang, J. Song, X.-M. Li, T. He, Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater, Desalination 405 (2017) 76-84.
[80] A. F. Faria, C. Liu, M. Xie, F. Perreault, L. D. Nghiem, J. Ma, M. Elimelech, Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control, J. Membr. Sci. 525 (2017) 146-156.
[81] N. Misdan, W. J. Lau, A. F. Ismail, Seawater Reverse Osmosis (SWRO) desalination by thin film composite membrane—Current development, challenges and future prospects, Desalination 287 (2012) 228-237.
[82] S. P. Hong, I.-C. Kim, T. Tak, Y.-N. Kwon, Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes, Desalination 309 (2013) 18-26.
[83] G. Han, J. S. de Wit, T.-S. Chung, Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode, Water Res. 81 (2015) 54-63.
[84] K. P. Lee, T. C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—Development to date and future potential, J. Membr. Sci. 370 (2011) 1-22.
[85] J. Yu, Y. Baek, H. Yoon, J. Yoon, New disinfectant to control biofouling of polyamide reverse osmosis membrane, J. Membr. Sci. 427 (2013) 30-36.
[86] G. Chen, Z. Wang, L. D. Nghiem, X.-M. Li, M. Xie, B. Zhao, M. Zhang, J. Song, T. He, Treatment of shale gas drilling flowback fluids (SGDFs) by forward osmosis: Membrane fouling and mitigation, Desalination 366 (2015) 113-120.
[87] H. Huang, H. Cho, K. Schwab, J. G. Jacangelo, Effects of feedwater pretreatment on the removal of organic microconstituents by a low fouling reverse osmosis membrane, Desalination 281 (2011) 446-454.
[88] A. Matin, Z. Khan, S. M. J. Zaidi, M. C. Boyce, Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention, Desalination 281 (2011) 1-16.
[89] S. Jeong, S.-J. Kim, L. H. Kim, M. S. Shin, S. Vigneswaran, T. VinhNguyen, I. S. Kim, Foulant analysis of a reverse osmosis membrane used pretreated seawater, J. Membr. Sci. 428 (2013) 434-444.
[90] D. Ghernaout, A. Boucherit, Review of coagulation’s rapid mixing for NOM removal, J. Res. Develop. Chem. (2015), Article ID 926518, doi: 10.5171/2015.926518.
[91] D. Ghernaout, A. I. Al-Ghonamy, A. Boucherit, B. Ghernaout, M. W. Naceur, N. Ait Messaoudene, M. Aichouni, A. A. Mahjoubi, N. A. Elboughdiri, Brownian motion and coagulation process, Am. J. Environ. Prot. 4 (2015) 1-15, doi: 10.11648/j.ajeps.s.2015040501.11.
[92] H. Karkhanechi, F. Razi, I. Sawada, R. Takagi, Y. Ohmukai, H. Matsuyama, Improvement of antibiofouling performance of a reverse osmosis membrane through biocide release and adhesion resistance, Sep. Purif. Technol. 105 (2013) 106-113.
[93] H.-G. Park, S.-G. Cho, K.-J. Kim, Y.-N. Kwon, Effect of feed spacer thickness on the fouling behavior in reverse osmosis process — A pilot scale study, Desalination 379 (2016) 155-163.
[94] M. You, P. Wang, M. Xu, T. Yuan, J. Meng, Fouling resistance and cleaning efficiency of stimuli-responsive reverse osmosis (RO) membranes, Polymer 103 (2016) 457-467.
[95] J. S. Louie, Fouling-resistant coatings for reverse osmosis membranes: gas and liquid permeation studies on morphology and mass transport effects, PhD Thesis, Stanford University, 2008.
[96] A. C. Sagle, PEG hydrogels as anti-fouling coatings for reverse osmosis membranes, PhD Thesis, The University of Texas at Austin, 2009.
[97] J. M. Frick, L. A. Féris, I. C. Tessaro, Evaluation of pretreatments for a blowdown stream to feed a filtration system with discarded reverse osmosis membranes, Desalination 341 (2014) 126-134.
[98] X. Liu, S. L. Ong, H. Y. Ng, Fabrication of mesh-embedded double-skinned substrate membrane and enhancement of its surface hydrophilicity to improve anti-fouling performance of resultant thin-film composite forward osmosis membrane, J. Membr. Sci. 511 (2016) 40-53.
[99] M. Liu, S. Yu, M. Qi, Q. Pan, C. Gao, Impact of manufacture technique on seawater desalination performance of thin-film composite polyamide-urethane reverse osmosis membranes and their spiral wound elements, J. Membr. Sci. 348 (2010) 268-276.
[100] M. Liu, Z. Chen, S. Yu, D. Wu, C. Gao, Thin-film composite polyamide reverse osmosis membranes with improved acid stability and chlorine resistance by coating N-isopropylacrylamide-co-acrylamide copolymers, Desalination 270 (2011) 248-257.
[101] B. Khorshidi, A. Bhinder, T. Thundat, D. Pernitsky, M. Sadrzadeh, Developing high throughput thin film composite polyamide membranes for forward osmosis treatment of SAGD produced water, J. Membr. Sci. 511 (2016) 29-39.
[102] Q. Jia, Y. Xu, J. Shen, H. Yang, L. Zhou, Effects of hydrophilic solvent and oxidation resistance post surfacetreatment on molecular structure and forward osmosis performanceof polyamide thin-film composite (TFC) membranes, Appl. Surf. Sci. 356 (2015) 1105-1116.
[103] J. T. Arena, S. S. Manickam, K. K. Reimund, B. D. Freeman, J. R. McCutcheon, Solute and water transport in forward osmosis using polydopamine modified thin film composite membranes, Desalination 343 (2014) 8-16.
[104] L. Zhang, Q. She, R. Wang, S. Wongchitphimon, Y. Chen, A. G. Fane, Unique roles of aminosilane in developing anti-fouling thin film composite (TFC) membranes for pressure retarded osmosis (PRO), Desalination 389 (2016) 119-128.
[105] Q. She, Y. K. W. Wong, S. Zhao, C. Y. Tang, Organic fouling in pressure retarded osmosis: Experiments, mechanisms and implications, J. Membr. Sci. 428 (2013) 181-189.
[106] H. Y. Ng, M. Elimelech, Influence of colloidal fouling on rejection of trace organic contaminants by reverse osmosis, J. Membr. Sci. 244 (2004) 215-226.
[107] B. D. Coday, C. Hoppe-Jones, D. Wandera, J. Shethji, J. Herron, K. Lampi, S. A. Snyder, T. Y. Cath, Evaluation of the transport parameters and physiochemical properties of forward osmosis membranes after treatment of produced water, J. Membr. Sci. 499 (2016) 491-502.
[108] I. J. Esfahani, M. J. Kim, C. H. Yun, C. K. Yoo, Proposed new fouling monitoring indices for seawater reverse osmosis Ćto determine the membrane cleaning interval, J. Membr. Sci. 442 (2013) 83-96.
[109] R. P. Schneider, L. M. Ferreira, P. Binder, E. M. Bejarano, K. P. Góes, E. Slongo, C. R. Machado, G. M. Z. Rosa, Dynamics of organic carbon and of bacterial populations in a conventional pretreatment train of a reverse osmosis unit experiencing severe biofouling, J. Membr. Sci. 266 (2005) 18-29.
[110] C. Ayache, C. Manes, M. Pidou, J. P. Croué, W. Gernjak, Microbial community analysis of fouled reverse osmosis membranes used in water recycling, Water Res. 7 (2013) 3291-3299.
[111] B. K. Gurtler, T. A. Vetter, E. M. Perdue, E. Ingall, J.-F. Koprivnjak, P. H. Pfromm, Combining reverse osmosis and pulsed electrical current electrodialysis for improved recovery of dissolved organic matter from seawater, J. Membr. Sci. 323 (2008) 328-336.
[112] S. R.-V. Castrillón, X. Lu, D. L. Shaffer, M. Elimelech, Amine enrichment and poly(ethyleneglycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control, J. Membr. Sci. 450 (2014) 331-339.
[113] S. R. Suwarno, S. Hanada, T. H. Chong, S. Goto, M. Henmi, A. G. Fane, The effect of different surface conditioning layers on bacterial adhesion on reverse osmosis membranes, Desalination 387 (2016) 1-13.
[114] Y.-L. Lin, J.-H. Chiou, C.-H. Lee, Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes, J. Hazard. Materi. 277 (2014) 102-109.
[115] M. M. T. Khan, P. S. Stewart, D. J. Moll, W. E. Mickols, M. D. Burr, S. E. Nelson, A. K. Camper, Assessing biofouling on polyamide reverse osmosis (RO) membrane surfaces in a laboratory system, J. Membr. Sci. 349 (2010) 429-437.
[116] J. Kim, G. Blandin, S. Phuntsho, A. Verliefde, P. Le-Clech, H. Shon, Practical considerations for operability of an 8″ spiral wound forward osmosis module: Hydrodynamics, fouling behaviour and cleaning strategy, Desalination 404 (2017) 249-258.
[117] F. Rahman, Calcium sulfate precipitation studies with scale inhibitors for reverse osmosis desalination, Desalination 319 (2013) 79-84.
[118] E. Yang, K.-J. Chae, A. B. Alayande, K.-Y. Kim, I. S. Kim, Concurrent performance improvement and biofouling mitigation in osmotic microbial fuel cells using a silver nanoparticle-polydopamine coated forward osmosis membrane, J. Membr. Sci. 513 (2016) 217-225.
[119] A. I. Radu, J. S. Vrouwenvelder, M. C. M. van Loosdrecht, C. Picioreanu, Modeling the effect of biofilm formation on reverse osmosis performance: Flux, feed channel pressure drop and solute passage, J. Membr. Sci. 365 (2010) 1-15.
[120] M. Chapman Wilbert, J. Pellegrino, A. Zydney, Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes, Desalination 115 (1998) 15-32.
[121] S. Kim, E. M. V. Hoek, Interactions controlling biopolymer fouling of reverse osmosis membranes, Desalination 202 (2007) 333-342.
[122] R. Mehta, H. Brahmbhatt, N. K. Saha, A. Bhattacharya, Removal of substituted phenyl urea pesticides by reverse osmosis membranes: Laboratory scale study for field water application, Desalination 358 (2015) 69-75.
[123] A. Bera, R. M. Gol, S. Chatterjee, S. K. Jewrajka, PEGylation and incorporation of triazine ring into thin film composite reverse osmosis membranes for enhancement of anti-organic and anti-biofouling properties, Desalination 360 (2015) 108-117.
[124] G. Han, J. Zhou, C. Wan, T. Yang, T.-S. Chung, Investigations of inorganic and organic fouling behaviors, antifouling and cleaning strategies for pressure retarded osmosis (PRO) membrane using seawater desalination brine and wastewater, Water Res. 103 (2016) 264-275.
[125] S. Zhao, J. Minier-Matar, S. Chou, R. Wang, A. G. Fane, S. Adham, Gas field produced/process water treatment using forward osmosis hollow fiber membrane: Membrane fouling and chemical cleaning, Desalination 402 (2017) 143-151.
[126] I. G. Wenten, Khoiruddin, Reverse osmosis applications: Prospect and challenges, Desalination 391 (2016) 112-125.
[127] Z. Zhang, Z. Wang, J. Wang, S. Wang, Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosismembranes by grafting 3-allyl-5,5-dimethylhydantoin and N, N′-Methylenebis (acrylamide), Desalination 309 (2013) 187-196.
[128] L. O. Villacorte, M. D. Kennedy, G. L. Amy, J. C. Schippers, The fate of Transparent Exopolymer Particles (TEP) in integrated membrane systems: Removal through pre-treatment processes and deposition on reverse osmosis membranes, Water Res. 43 (2009) 5039-5052.
[129] S. Yu, M. Liu, X. Liu, C. Gao, Performance enhancement in interfacially synthesized thin-film composite polyamide-urethane reverse osmosis membrane for seawater desalination, J. Membr. Sci. 342 (2009) 313-320.
[130] E. Ould Mohamedou, D. B. P. Suarez, F. Vince, P. Jaouen, M. Pontie, New lives for old reverse osmosis (RO) membranes, Desalination 253 (2010) 62-70.
[131] S. S. Sablani, M. F. A. Goosen, R. Al-Belushi, M. Wilf, Concentration polarization in ultrafiltration and reverse osmosis: a critical review, Desalination 141 (2001) 269-289.
[132] S. Kim, E. M. V. Hoek, Modeling concentration polarization in reverse osmosis processes, Desalination 186 (2005) 111-128.
[133] G. Kang, M. Liu, B. Lin, Y. Cao, Q. Yuan, A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol), Polymer 48 (2007) 1165-1170.
[134] T. P. N. Nguyen, B.-M. Jun, H. G. Park, S.-W. Han, Y.-K. Kim, H. K. Lee, Y.-N. Kwon, Concentration polarization effect and preferable membrane configuration at pressure-retarded osmosis operation, Desalination 389 (2016) 58-67.
[135] E. M. Van Wagner, A. C. Sagle, M. M. Sharma, B. D. Freeman, Effect of crossflow testing conditions, including feed pH and continuous feed filtration, on commercial reverse osmosis membrane performance, J. Membr. Sci. 345 (2009) 97-109.
[136] J. Fernández-Sempere, F. Ruiz-Beviá, P. García-Algado, R. Salcedo-Díaz, Experimental study of concentration polarization in a crossflow reverse osmosis system using Digital Holographic Interferometry, Desalination 257 (2010) 36-45.
[137] X. Zhao, J. Li, C. Liu, Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer, Desalination 408 (2017) 102-109.
Cite This Article
  • APA Style

    Djamel Ghernaout, Abd El-Aziz El-Wakil. (2017). Short Communication: Requiring Reverse Osmosis Membranes Modifications – An Overview. American Journal of Chemical Engineering, 5(4), 81-88. https://doi.org/10.11648/j.ajche.20170504.15

    Copy | Download

    ACS Style

    Djamel Ghernaout; Abd El-Aziz El-Wakil. Short Communication: Requiring Reverse Osmosis Membranes Modifications – An Overview. Am. J. Chem. Eng. 2017, 5(4), 81-88. doi: 10.11648/j.ajche.20170504.15

    Copy | Download

    AMA Style

    Djamel Ghernaout, Abd El-Aziz El-Wakil. Short Communication: Requiring Reverse Osmosis Membranes Modifications – An Overview. Am J Chem Eng. 2017;5(4):81-88. doi: 10.11648/j.ajche.20170504.15

    Copy | Download

  • @article{10.11648/j.ajche.20170504.15,
      author = {Djamel Ghernaout and Abd El-Aziz El-Wakil},
      title = {Short Communication: Requiring Reverse Osmosis Membranes Modifications – An Overview},
      journal = {American Journal of Chemical Engineering},
      volume = {5},
      number = {4},
      pages = {81-88},
      doi = {10.11648/j.ajche.20170504.15},
      url = {https://doi.org/10.11648/j.ajche.20170504.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20170504.15},
      abstract = {Do really reverse osmosis (RO) membranes need modification to cover their disadvantages or enhance their efficiency? Are there any defects in RO membranes manufacturing that require modification? These questions are discussed here in this short review. Through the world, there are thousands of patents, publications, and PhD theses dealing with surface modification and grafting of RO membranes. This growing phenomenon should attract the attention of the scientific community for technologic and economic reasons. Due to the increasing water pollution levels, which overpassed the RO membranes capacities, there is an urgent need to manufacture RO membranes, with multidisciplinary characteristics and high performance regarding both salts removal and fouling resistance, before sending them to the market and avoiding to think to their following modification.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Short Communication: Requiring Reverse Osmosis Membranes Modifications – An Overview
    AU  - Djamel Ghernaout
    AU  - Abd El-Aziz El-Wakil
    Y1  - 2017/07/31
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajche.20170504.15
    DO  - 10.11648/j.ajche.20170504.15
    T2  - American Journal of Chemical Engineering
    JF  - American Journal of Chemical Engineering
    JO  - American Journal of Chemical Engineering
    SP  - 81
    EP  - 88
    PB  - Science Publishing Group
    SN  - 2330-8613
    UR  - https://doi.org/10.11648/j.ajche.20170504.15
    AB  - Do really reverse osmosis (RO) membranes need modification to cover their disadvantages or enhance their efficiency? Are there any defects in RO membranes manufacturing that require modification? These questions are discussed here in this short review. Through the world, there are thousands of patents, publications, and PhD theses dealing with surface modification and grafting of RO membranes. This growing phenomenon should attract the attention of the scientific community for technologic and economic reasons. Due to the increasing water pollution levels, which overpassed the RO membranes capacities, there is an urgent need to manufacture RO membranes, with multidisciplinary characteristics and high performance regarding both salts removal and fouling resistance, before sending them to the market and avoiding to think to their following modification.
    VL  - 5
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Chemical Engineering, College of Engineering, University of Hail, Ha’il, Saudi Arabia

  • Department of Chemical Engineering, College of Engineering, University of Hail, Ha’il, Saudi Arabia

  • Sections