The kaolin sample from Alkaleri in Bauchi State was analyzed to ascertain its metal and metal oxides content and to investigate their potential use for industrial purposes. Neutron activation analysis technique was used for the metals while the turbimetric and Molybdenum Blue methods were used to determine the sulphates and phosphates respectively. The result showed that the Alkaleri kaolin with Fe (1.3 x 10-3%), K2O(0.53%), Na2O( 0.018%), TiO2 (4.6x10-4%), meets the specification for paper, ceramics, rubber, porcelain, pharmaceutics, cosmetics and glaze production but its alumina content is slightly below the minimum requirement for these uses except for rubber for which the content is within the specified value and for tiles for which the value is slightly above the specification. The combination of sulphate and phosphate contents which are 4.71% and 2.18ppm respectively could increase their absorbing property and makes them more useful for medicinal and cosmetic purposes. The pH value of the kaolin was found to be 4.3 which makes it unsuitable for most industrial purposes, e.g. rubber and plastic production, the pH need to be increased to 5-7 range (the preferred value for most industrial uses). The nitrate and chloride contents indicated values of 18ppm and 0.3ppm respectively.
Published in | American Journal of Chemical Engineering (Volume 5, Issue 6) |
DOI | 10.11648/j.ajche.20170506.12 |
Page(s) | 130-134 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Alkaleri, Kaolin, Neutron Activation, Metals, Metal Oxide
[1] | Ground report (2016). What makes kaolin clay different from kaolinite clay. Retrieved 07 August, 2017 from https://www.groundreport.com/makes-kaolin-clay-different-kaolinite-clay |
[2] | Newman, A., 1987. Chemistry of Clay and Clay Minerals, Min. Soc. Mon., London, 6, 480. |
[3] | Konta, J., 1980. Properties of ceramic raw materials. Ceramic monographs. Handbook of ceramics, Schmid -Freiburg, 1-32. |
[4] | Murray, H., 2000. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview, Applied Clay Science, Vol. 17, No. 5-6, 207-221. |
[5] | Cravero, F., Gonzalez, I., Galan, E., and Dominguez, E., 1997. Geology, mineralogy, origin and possible applications of some Argentinian kaolins in the Neuquen basin. Applied Clay Science, Vol. 12, No. 1-2, 27-42. |
[6] | Prasad, M., Reid K. and Murray H., 1991. Kaolin: processing, properties and applications. Applied Clay Science, Vol. 6, No. 2, 87-119. |
[7] | Murray, H., 1991. Overview—clay mineral applications. Applied Clay Science, Vol. 5, No. 5-6, 379-395. |
[8] | Burst, J., 1991. The application of clay minerals in ceramics. Applied Clay Science, Vol. 5, No. 5-6, 421-443. |
[9] | Murray, H., and Kogel, J., 2005. Engineered clay products for the paper industry, Applied Clay Science, Vol. 29, No. 3-4, 199-206. |
[10] | Velho J. and Gomes, C., 1991. Characterization of Portuguese kaolins for the paper industry: beneficiation through new delamination techniques. Applied Clay Science, Vol. 6, No. 2, 155-170. |
[11] | Bundy, W., and Ishley J., 1991. Kaolin in paper filling and coating. Applied Clay Science, Vol. 5, No. 5-6, 397-420. |
[12] | Schupp, J. R., Fallahi, E., and Chun, I.-. J., 2004. Effect of Particle Film on Fruit Sunburn, Maturity and Quality of “Fuji” and “Honeycrisp” Apples. Acta Hort. (ISHS) Vol. 636, 551-556. |
[13] | Jonah, S. A., Umar, I. M., Oladipo, M. O. A., Balogun, G. I. and Adeyomo, D. J. (2006): Standardization of NIRR-1 Irradiation and Counting Facilities for Instrumental Activation Analysis. J. Applied Radiation and Isotopes, 64: 818 – 822. |
[14] | Johnstone, S. J., Johnstone, M. G. (1961). Minerals for the Chemical and Allied Industries. In: Ahmed, K. S. (1986). Development of Phospate-Bonded Fire Clay Refractory Castables. Unpublish M. Sc. Thesis, Department of Chemical Engineering, Ahmadu Bello University, Zaria. |
[15] | Hansen, T. (2003). Titanium oxide, Titania. Ceramic materials Data Base. Retrieved 10 August, 2017 from http://ceramicmaterials.com/com/cermat/html |
APA Style
Zerendu Chikaodinaka Christian, Ameji John Philip, Haruna Muhammad Idris, Zaharaddeen Shehu. (2017). Chemical Investigation of Alkaleri Kaolin Deposit for Its Potential Industrial Applications. American Journal of Chemical Engineering, 5(6), 130-134. https://doi.org/10.11648/j.ajche.20170506.12
ACS Style
Zerendu Chikaodinaka Christian; Ameji John Philip; Haruna Muhammad Idris; Zaharaddeen Shehu. Chemical Investigation of Alkaleri Kaolin Deposit for Its Potential Industrial Applications. Am. J. Chem. Eng. 2017, 5(6), 130-134. doi: 10.11648/j.ajche.20170506.12
AMA Style
Zerendu Chikaodinaka Christian, Ameji John Philip, Haruna Muhammad Idris, Zaharaddeen Shehu. Chemical Investigation of Alkaleri Kaolin Deposit for Its Potential Industrial Applications. Am J Chem Eng. 2017;5(6):130-134. doi: 10.11648/j.ajche.20170506.12
@article{10.11648/j.ajche.20170506.12, author = {Zerendu Chikaodinaka Christian and Ameji John Philip and Haruna Muhammad Idris and Zaharaddeen Shehu}, title = {Chemical Investigation of Alkaleri Kaolin Deposit for Its Potential Industrial Applications}, journal = {American Journal of Chemical Engineering}, volume = {5}, number = {6}, pages = {130-134}, doi = {10.11648/j.ajche.20170506.12}, url = {https://doi.org/10.11648/j.ajche.20170506.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20170506.12}, abstract = {The kaolin sample from Alkaleri in Bauchi State was analyzed to ascertain its metal and metal oxides content and to investigate their potential use for industrial purposes. Neutron activation analysis technique was used for the metals while the turbimetric and Molybdenum Blue methods were used to determine the sulphates and phosphates respectively. The result showed that the Alkaleri kaolin with Fe (1.3 x 10-3%), K2O(0.53%), Na2O( 0.018%), TiO2 (4.6x10-4%), meets the specification for paper, ceramics, rubber, porcelain, pharmaceutics, cosmetics and glaze production but its alumina content is slightly below the minimum requirement for these uses except for rubber for which the content is within the specified value and for tiles for which the value is slightly above the specification. The combination of sulphate and phosphate contents which are 4.71% and 2.18ppm respectively could increase their absorbing property and makes them more useful for medicinal and cosmetic purposes. The pH value of the kaolin was found to be 4.3 which makes it unsuitable for most industrial purposes, e.g. rubber and plastic production, the pH need to be increased to 5-7 range (the preferred value for most industrial uses). The nitrate and chloride contents indicated values of 18ppm and 0.3ppm respectively.}, year = {2017} }
TY - JOUR T1 - Chemical Investigation of Alkaleri Kaolin Deposit for Its Potential Industrial Applications AU - Zerendu Chikaodinaka Christian AU - Ameji John Philip AU - Haruna Muhammad Idris AU - Zaharaddeen Shehu Y1 - 2017/11/11 PY - 2017 N1 - https://doi.org/10.11648/j.ajche.20170506.12 DO - 10.11648/j.ajche.20170506.12 T2 - American Journal of Chemical Engineering JF - American Journal of Chemical Engineering JO - American Journal of Chemical Engineering SP - 130 EP - 134 PB - Science Publishing Group SN - 2330-8613 UR - https://doi.org/10.11648/j.ajche.20170506.12 AB - The kaolin sample from Alkaleri in Bauchi State was analyzed to ascertain its metal and metal oxides content and to investigate their potential use for industrial purposes. Neutron activation analysis technique was used for the metals while the turbimetric and Molybdenum Blue methods were used to determine the sulphates and phosphates respectively. The result showed that the Alkaleri kaolin with Fe (1.3 x 10-3%), K2O(0.53%), Na2O( 0.018%), TiO2 (4.6x10-4%), meets the specification for paper, ceramics, rubber, porcelain, pharmaceutics, cosmetics and glaze production but its alumina content is slightly below the minimum requirement for these uses except for rubber for which the content is within the specified value and for tiles for which the value is slightly above the specification. The combination of sulphate and phosphate contents which are 4.71% and 2.18ppm respectively could increase their absorbing property and makes them more useful for medicinal and cosmetic purposes. The pH value of the kaolin was found to be 4.3 which makes it unsuitable for most industrial purposes, e.g. rubber and plastic production, the pH need to be increased to 5-7 range (the preferred value for most industrial uses). The nitrate and chloride contents indicated values of 18ppm and 0.3ppm respectively. VL - 5 IS - 6 ER -