Preisach model is the most used hysteresis model in magnetic materials research. This article presents problems that appear in implementation of a two variable search algorithm for Preisach model identification. The algorithm is use to find the optimal parameters values for the probability function distribution. The tests for a subway card in the case of longitudinal and transversal magnetization are available.
Published in | American Journal of Electromagnetics and Applications (Volume 2, Issue 3) |
DOI | 10.11648/j.ajea.20140203.12 |
Page(s) | 27-33 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Hysteresis, Preisach, Identification
[1] | I.D.Mayergoyz, Mathematical Models of Hysteresis, Springer Verlag, New York, 1990 |
[2] | I. D. Mayergoyz, G. Bertotti, The science of hysteresis, Academic Press, London, 2005 |
[3] | G. Bertotti, Hysteresis in Magnetism, Academic Press, London, 1998 |
[4] | E.Della Torre, Magnetic Hysteresis, IEEE Press, Piscataway, 1999 |
[5] | A. Visintin, Differential Models of Hysteresis, Springer, Berlin, 1994 |
[6] | A. Ivanyi, Hysteresis Models in Electromagnetic Computation, Akademiai Kiado, Budapest, 1997 |
[7] | [7] F. Preisach, “Uber die magnetische”, Nachwirkung, Zeitschrift fur Physik, No. 94, 1935, pp. 277-302 |
[8] | E. C. Stoner, F. R. S. , E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys”, IEEE Trans. on Magn., vol. 27, no. 4, 1991, pp. 3475-3518 |
[9] | L. Dupre, J. Melkebeek, “Electromagnetic hysteresis modelling: from material science to finite element analysis of devices”, ICS-Newsletter, vol. 10, no. 3, 2003, pp. 3-14 |
[10] | E. Cardelli, E. D. Torre, A. Faba, “Phenomenological modeling of magnetic hysteresis”, ICS-Newsletter, vol. 17, no. 1, 2010, pp. 3-17 |
[11] | D. L. Atherton, J. R. Beattie, "A mean field Stoner-Wohlfarth hysteresis model", IEEE Trans. on Magn., vol. 26, no. 6, 1990,pp. 3059-3063 |
[12] | E. Della Torre, G. Kádár, "Vector Preisach and the moving model", J. Appl. Phys., vol. 63, no. 8, 1988, pp. 3004-3006 |
[13] | E. D. Torre, F. Vajda, “Parameter identification of the complete-moving-hysteresis model using major loop data”, IEEE Trans. on Magn., vol. 30, no. 12, 1995, pp. 4987-5000 |
[14] | J. Fuzi, “Analytical approximation of Preisach distribution functions”, IEEE Trans. On Magn., vol. 39, no. 5, 2003, 1357-1360 |
[15] | B. Van de Wiele, L. Vandenbossche, L. Dupre, D. Daniel Zutter, “Energy considerations in a micromagnetic hysteresis model and the Preisach model”, J. Appl. Phys, vol. 108, no. 10, 2010, pp. 103902 - 103902-10 |
[16] | S. Motoasca, G. Scutaru, “Hysteresis modelling of soft magnetic materials using LabVIEW programs”, Advances in Electrical and Computer Engineering, vol. 10, no. 2, 2010, pp. 94-97 |
[17] | A. Stancu, L. Stoleriu, P. Andrei, “Vectorial Preisach type model designed for parallel computing”, J. of Magnetism and Magnetic Mat., vol. 316, no. 2, 2007, pp. 309-312 |
[18] | G. Radons, F. Hebe, R. Lange, S. Schubert, “On the dynamics of non-linear hysteretic systems”, in press |
[19] | M. Kuczman, “Vector Preisach hysteresis modelling: Measurement, identification and application”, Physica B, No. 406, 2011, pp. 1403-1409 |
[20] | A. A. Adly, “Numerical implementation and testing of new vector isotropic Preisach-type models”, IEEE Trans. On Magn., vol. 30, no, 6, 1994, pp. 4383-4385 |
[21] | S. Chapra, „Applied numerical methods with Matlab for Engineers and Scientists 3rd edition”, McGraw-Hill Higher Education, 2012 |
[22] | S. M. Sina et al., “Preisach analysis of sputtered SmCo thick films”, Journal of Applied Physics, vol. 113, no. 14, 2013, pp. 143901-143901-4 |
[23] | O. Tabara, Vectorial hysteresis models in magnetism, PhD thesis, University “Politehnica” of Bucharest, 2013 |
[24] | J. Fuzi, “Analytical approximations of Preisach distribution function”, IEEE Trans. on Magn., vol. 39, no. 3, 2003, pp. 1357-1360 |
[25] | O. Henze, W. M. Rucker, “Identification procedures of Preisach model”, IEEE Trans. On Magn., vol. 36, no. 2, 2002, pp. 833-836 |
[26] | X. Tan, J. S. Baras “Adaptive identification and control of hysteresis in smart materials”, IEEE Trans. on Automatic Control, vol. 50, no. 6, 2005, pp. 827-839 |
APA Style
Tabara, Octavian Adrian. (2014). New Two Variable Search Algorithm Implemented for Preisach Model. American Journal of Electromagnetics and Applications, 2(3), 27-33. https://doi.org/10.11648/j.ajea.20140203.12
ACS Style
Tabara; Octavian Adrian. New Two Variable Search Algorithm Implemented for Preisach Model. Am. J. Electromagn. Appl. 2014, 2(3), 27-33. doi: 10.11648/j.ajea.20140203.12
AMA Style
Tabara, Octavian Adrian. New Two Variable Search Algorithm Implemented for Preisach Model. Am J Electromagn Appl. 2014;2(3):27-33. doi: 10.11648/j.ajea.20140203.12
@article{10.11648/j.ajea.20140203.12, author = {Tabara and Octavian Adrian}, title = {New Two Variable Search Algorithm Implemented for Preisach Model}, journal = {American Journal of Electromagnetics and Applications}, volume = {2}, number = {3}, pages = {27-33}, doi = {10.11648/j.ajea.20140203.12}, url = {https://doi.org/10.11648/j.ajea.20140203.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajea.20140203.12}, abstract = {Preisach model is the most used hysteresis model in magnetic materials research. This article presents problems that appear in implementation of a two variable search algorithm for Preisach model identification. The algorithm is use to find the optimal parameters values for the probability function distribution. The tests for a subway card in the case of longitudinal and transversal magnetization are available.}, year = {2014} }
TY - JOUR T1 - New Two Variable Search Algorithm Implemented for Preisach Model AU - Tabara AU - Octavian Adrian Y1 - 2014/09/10 PY - 2014 N1 - https://doi.org/10.11648/j.ajea.20140203.12 DO - 10.11648/j.ajea.20140203.12 T2 - American Journal of Electromagnetics and Applications JF - American Journal of Electromagnetics and Applications JO - American Journal of Electromagnetics and Applications SP - 27 EP - 33 PB - Science Publishing Group SN - 2376-5984 UR - https://doi.org/10.11648/j.ajea.20140203.12 AB - Preisach model is the most used hysteresis model in magnetic materials research. This article presents problems that appear in implementation of a two variable search algorithm for Preisach model identification. The algorithm is use to find the optimal parameters values for the probability function distribution. The tests for a subway card in the case of longitudinal and transversal magnetization are available. VL - 2 IS - 3 ER -