| Peer-Reviewed

New Two Variable Search Algorithm Implemented for Preisach Model

Received: 17 August 2014     Accepted: 25 August 2014     Published: 10 September 2014
Views:       Downloads:
Abstract

Preisach model is the most used hysteresis model in magnetic materials research. This article presents problems that appear in implementation of a two variable search algorithm for Preisach model identification. The algorithm is use to find the optimal parameters values for the probability function distribution. The tests for a subway card in the case of longitudinal and transversal magnetization are available.

Published in American Journal of Electromagnetics and Applications (Volume 2, Issue 3)
DOI 10.11648/j.ajea.20140203.12
Page(s) 27-33
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Hysteresis, Preisach, Identification

References
[1] I.D.Mayergoyz, Mathematical Models of Hysteresis, Springer Verlag, New York, 1990
[2] I. D. Mayergoyz, G. Bertotti, The science of hysteresis, Academic Press, London, 2005
[3] G. Bertotti, Hysteresis in Magnetism, Academic Press, London, 1998
[4] E.Della Torre, Magnetic Hysteresis, IEEE Press, Piscataway, 1999
[5] A. Visintin, Differential Models of Hysteresis, Springer, Berlin, 1994
[6] A. Ivanyi, Hysteresis Models in Electromagnetic Computation, Akademiai Kiado, Budapest, 1997
[7] [7] F. Preisach, “Uber die magnetische”, Nachwirkung, Zeitschrift fur Physik, No. 94, 1935, pp. 277-302
[8] E. C. Stoner, F. R. S. , E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys”, IEEE Trans. on Magn., vol. 27, no. 4, 1991, pp. 3475-3518
[9] L. Dupre, J. Melkebeek, “Electromagnetic hysteresis modelling: from material science to finite element analysis of devices”, ICS-Newsletter, vol. 10, no. 3, 2003, pp. 3-14
[10] E. Cardelli, E. D. Torre, A. Faba, “Phenomenological modeling of magnetic hysteresis”, ICS-Newsletter, vol. 17, no. 1, 2010, pp. 3-17
[11] D. L. Atherton, J. R. Beattie, "A mean field Stoner-Wohlfarth hysteresis model", IEEE Trans. on Magn., vol. 26, no. 6, 1990,pp. 3059-3063
[12] E. Della Torre, G. Kádár, "Vector Preisach and the moving model", J. Appl. Phys., vol. 63, no. 8, 1988, pp. 3004-3006
[13] E. D. Torre, F. Vajda, “Parameter identification of the complete-moving-hysteresis model using major loop data”, IEEE Trans. on Magn., vol. 30, no. 12, 1995, pp. 4987-5000
[14] J. Fuzi, “Analytical approximation of Preisach distribution functions”, IEEE Trans. On Magn., vol. 39, no. 5, 2003, 1357-1360
[15] B. Van de Wiele, L. Vandenbossche, L. Dupre, D. Daniel Zutter, “Energy considerations in a micromagnetic hysteresis model and the Preisach model”, J. Appl. Phys, vol. 108, no. 10, 2010, pp. 103902 - 103902-10
[16] S. Motoasca, G. Scutaru, “Hysteresis modelling of soft magnetic materials using LabVIEW programs”, Advances in Electrical and Computer Engineering, vol. 10, no. 2, 2010, pp. 94-97
[17] A. Stancu, L. Stoleriu, P. Andrei, “Vectorial Preisach type model designed for parallel computing”, J. of Magnetism and Magnetic Mat., vol. 316, no. 2, 2007, pp. 309-312
[18] G. Radons, F. Hebe, R. Lange, S. Schubert, “On the dynamics of non-linear hysteretic systems”, in press
[19] M. Kuczman, “Vector Preisach hysteresis modelling: Measurement, identification and application”, Physica B, No. 406, 2011, pp. 1403-1409
[20] A. A. Adly, “Numerical implementation and testing of new vector isotropic Preisach-type models”, IEEE Trans. On Magn., vol. 30, no, 6, 1994, pp. 4383-4385
[21] S. Chapra, „Applied numerical methods with Matlab for Engineers and Scientists 3rd edition”, McGraw-Hill Higher Education, 2012
[22] S. M. Sina et al., “Preisach analysis of sputtered SmCo thick films”, Journal of Applied Physics, vol. 113, no. 14, 2013, pp. 143901-143901-4
[23] O. Tabara, Vectorial hysteresis models in magnetism, PhD thesis, University “Politehnica” of Bucharest, 2013
[24] J. Fuzi, “Analytical approximations of Preisach distribution function”, IEEE Trans. on Magn., vol. 39, no. 3, 2003, pp. 1357-1360
[25] O. Henze, W. M. Rucker, “Identification procedures of Preisach model”, IEEE Trans. On Magn., vol. 36, no. 2, 2002, pp. 833-836
[26] X. Tan, J. S. Baras “Adaptive identification and control of hysteresis in smart materials”, IEEE Trans. on Automatic Control, vol. 50, no. 6, 2005, pp. 827-839
Cite This Article
  • APA Style

    Tabara, Octavian Adrian. (2014). New Two Variable Search Algorithm Implemented for Preisach Model. American Journal of Electromagnetics and Applications, 2(3), 27-33. https://doi.org/10.11648/j.ajea.20140203.12

    Copy | Download

    ACS Style

    Tabara; Octavian Adrian. New Two Variable Search Algorithm Implemented for Preisach Model. Am. J. Electromagn. Appl. 2014, 2(3), 27-33. doi: 10.11648/j.ajea.20140203.12

    Copy | Download

    AMA Style

    Tabara, Octavian Adrian. New Two Variable Search Algorithm Implemented for Preisach Model. Am J Electromagn Appl. 2014;2(3):27-33. doi: 10.11648/j.ajea.20140203.12

    Copy | Download

  • @article{10.11648/j.ajea.20140203.12,
      author = {Tabara and Octavian Adrian},
      title = {New Two Variable Search Algorithm Implemented for Preisach Model},
      journal = {American Journal of Electromagnetics and Applications},
      volume = {2},
      number = {3},
      pages = {27-33},
      doi = {10.11648/j.ajea.20140203.12},
      url = {https://doi.org/10.11648/j.ajea.20140203.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajea.20140203.12},
      abstract = {Preisach model is the most used hysteresis model in magnetic materials research. This article presents problems that appear in implementation of a two variable search algorithm for Preisach model identification. The algorithm is use to find the optimal parameters values for the probability function distribution. The tests for a subway card in the case of longitudinal and transversal magnetization are available.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - New Two Variable Search Algorithm Implemented for Preisach Model
    AU  - Tabara
    AU  - Octavian Adrian
    Y1  - 2014/09/10
    PY  - 2014
    N1  - https://doi.org/10.11648/j.ajea.20140203.12
    DO  - 10.11648/j.ajea.20140203.12
    T2  - American Journal of Electromagnetics and Applications
    JF  - American Journal of Electromagnetics and Applications
    JO  - American Journal of Electromagnetics and Applications
    SP  - 27
    EP  - 33
    PB  - Science Publishing Group
    SN  - 2376-5984
    UR  - https://doi.org/10.11648/j.ajea.20140203.12
    AB  - Preisach model is the most used hysteresis model in magnetic materials research. This article presents problems that appear in implementation of a two variable search algorithm for Preisach model identification. The algorithm is use to find the optimal parameters values for the probability function distribution. The tests for a subway card in the case of longitudinal and transversal magnetization are available.
    VL  - 2
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Sections