| Peer-Reviewed

Corrosion Performance of Copper - Diamond Composites in Different Aqueous Solutions

Received: 9 December 2016     Accepted: 23 December 2016     Published: 20 January 2017
Views:       Downloads:
Abstract

In the present work copper/diamond composites, such as (Cu-10 Vf % diamond uncoated, Cu-30 Vf % diamond uncoated, Cu-10 Vf % diamond coated NiCrB and Cu-30 Vf % coated NiCrB) as heat sink materials have been fabricated using powder metallurgy and electroless techniques. The copper powder used in this study has been fabricated using electroless technique and the diamond powder was electroless coated with NiCrB film. The copper powder have been mixed with the uncoated or coated diamond particles, milled, compacted and sintered at 900°C in a hydrogen atmosphere. The corrosion behavior of the copper composite samples has been investigated in 0.6 M NaCl, 0.1 M HCl and 0.5 M NaOH solutions using potentiodynamic polarization anodic and cathodic Tafel lines and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) linking with energy dispersive X-ray spectroscopy (EDS) has been used to investigate the surface morphology and the chemical composition of the coated layer. The results of the corrosion test illustrated that the coated and uncoated Cu/diamond composites suffer from corrosion to a different extent in various electrolytes. The lowest corrosion rate in all the studied media was recorded for Cu-10 Vf % D coated NiCrB composite compared with the massive copper or uncoated composite samples.

Published in American Journal of Electromagnetics and Applications (Volume 4, Issue 2)
DOI 10.11648/j.ajea.20160402.15
Page(s) 39-49
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Metal-Matrix Composites (MMCs), Particle-Reinforced Composites, Corrosion, Scanning Electron Microscopy (SEM), Powder Processing, Sintering

References
[1] Xinjiang Z.; Pengyu D.; Benguo Z.; Shengyang T.; Zirun Y.; Yong C.; J. Alloys and Compounds, 2016, 671, 465.
[2] Issac D.; Ramasamy S.; Nadarajan M.; J. Materials Research and Technology; 2016, 54, 302.
[3] Sergey V; Kidalov and Fedor M. Shakhov; Materials; 2009, 2, 2467.
[4] Moustafa S. F; Zeitschrift Fuer Metallkunde; 1997, 88, 209.
[5] Moustafa S. F; Moustafa M. A.; El-Sahat O. A.; Mater. Lett.; 1996, 29, 37.
[6] Tavman I. H.; Powder Technol.; 1997, 91 (1), 63–67.
[7] Ruch P. W.; Beffort O.; Kleiner S.; Weber L.; Uggowitzer P. J; Compos. Sci. Technol., 2006, 66, 2677.
[8] Himbeault D. D.; Varin R. A.; Piekarski K.; Metall. Trans. A; 1988, 19A, 2109.
[9] Choo Seong-Hun; Lee Sunghak; and Kwon Soon-Ju; Metall. Trans. A; 1991, 30, 3131.
[10] Omayma A. G.; Abou Tabl M. H.; Abdel Hamid Z.; Mostafa S. F.; J. surf. and coat. Technol., 2006, 201, 1357.
[11] Moustafa S. F.; Abdel Hamid Z.; Fatma A. Morsy; Khalifa N. A.; Abdel Mouez F.; Natural Science, 2011, 3 (11), 936.
[12] Abdel Gawad O.; Chemistry Department, Faculty of Science, Cairo University, Ph. D thesis (2005).
[13] Shifler D. A.; Corros. Sci., 2005, 47, 2335.
[14] Metikos-Hukovic M; Babic R;, Corros. Sci., 2008, 51, 70.
[15] Khaled K. F.; Mater Chem. Phys., 2008, 112, 104.
[16] Zhang D. Q.; Cai Q. R.; He X. M.; Gao L. X.; Zhou G. D.; Mater. Chem. Phys., 2008, 112, 353.
[17] Abhijeet B.; Balasubramaniam R; Gupta M.; Corros. Sci., 2008, 50, 2423.
[18] Schultze J. W.; Lohrengel M. M.; Electrochim. Acta.; 2000, 45, 2499.
[19] Marcus P.; Electrochim. Acta., (1998, 43, 109.
[20] Qian S.; Newman R. C.; Cottis R. A.; Sieradzki K.; J Electrochem. Soc., 1990,137, 435.
[21] Milić S. M.; Antonijević M. M.; Šerbula S. M.; Bogdanović G. D; Corros. Eng. Sci. Technol., 2008, 43, 30.
[22] Kenneth K. A; Benjamin U. O.; Eng. Sci. and Technol., 2016, 19, 3, 1593.
[23] Kear G.; Barker B. D; Walsh F. F.; Corros. Sci.; 2004, 46, 109.
[24] Otmacic H.; Telegdi J.; Papp K.; Stupnisek Usac E.; Journal of Appl. Electrochem.; 2004, 34,5, 545.
[25] Deslouis C.; Tribollet B.; Mengoli G.; Musiani M. M.; Journal of Appl. Electrochem., 1988,18, 3, 374.
[26] Otmačić H.; Stupnišek-Lisac E.; Electrochim. Acta; 2003, 48, 985.
[27] Lee H. P.; Nobe K.; J. Electrochem. Soc.; 1986, 133, 2035.
[28] Abdel Hamid Z.; Abdel Mouez F.; Morsy F. A.; khalifa N. A.; International Journal of Engineering Practical Research; 2013, 2, 3, 112.
[29] Milošev, T. Kosec Mikić; M. Gaberšček, Electrochim. Acta, 2006, 52, 415.
[30] Abd El Haleem S. M.; Abd El Aal E. E.; Corros., 2006, 62, 121.
[31] Ferreira. J. P.; Rodrigues J. A.; da Fonseca I. T. E.; J. Solid State Electrochem.; 2004, 8, 260.
[32] Ribotta S. B.; La Morgia L. F.; Gassa L. M.; Folquer M. E.; J. Electroanal. Chem., 2008, 624, 262.
[33] Zaafarany I.; Boller H.; Current World Environment; 2009, 4 (2), 277.
[34] Levy M.; Chang F.; Blacksburg, Va, USA, 1981, p 33.
[35] El-Warraky; El-Shayeb H. A.; Sherif E. M.; Anti-Corros. Method and Materials, 2004, 51 (1), 52.
[36] Finsgar M.; Milosev I; Corros. Sci., 2010, 52, 2737.
[37] Zhang D. Q.; Gao L. X.; Zhou G. D; Lee K. Y.; Journal of Appl. Electrochem., 2008, 38, 1, 71.
[38] Appa Rao B. V.; Yakub Iqbal M. d.; Sreedhar B.; Electrochim. Acta; 2010, 55, 620.
Cite This Article
  • APA Style

    Z. Abdel Hamid, Mona H. Gomaa, H. B. Hassan. (2017). Corrosion Performance of Copper - Diamond Composites in Different Aqueous Solutions. American Journal of Electromagnetics and Applications, 4(2), 39-49. https://doi.org/10.11648/j.ajea.20160402.15

    Copy | Download

    ACS Style

    Z. Abdel Hamid; Mona H. Gomaa; H. B. Hassan. Corrosion Performance of Copper - Diamond Composites in Different Aqueous Solutions. Am. J. Electromagn. Appl. 2017, 4(2), 39-49. doi: 10.11648/j.ajea.20160402.15

    Copy | Download

    AMA Style

    Z. Abdel Hamid, Mona H. Gomaa, H. B. Hassan. Corrosion Performance of Copper - Diamond Composites in Different Aqueous Solutions. Am J Electromagn Appl. 2017;4(2):39-49. doi: 10.11648/j.ajea.20160402.15

    Copy | Download

  • @article{10.11648/j.ajea.20160402.15,
      author = {Z. Abdel Hamid and Mona H. Gomaa and H. B. Hassan},
      title = {Corrosion Performance of Copper - Diamond Composites in Different Aqueous Solutions},
      journal = {American Journal of Electromagnetics and Applications},
      volume = {4},
      number = {2},
      pages = {39-49},
      doi = {10.11648/j.ajea.20160402.15},
      url = {https://doi.org/10.11648/j.ajea.20160402.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajea.20160402.15},
      abstract = {In the present work copper/diamond composites, such as (Cu-10 Vf % diamond uncoated, Cu-30 Vf % diamond uncoated, Cu-10 Vf % diamond coated NiCrB and Cu-30 Vf % coated NiCrB) as heat sink materials have been fabricated using powder metallurgy and electroless techniques. The copper powder used in this study has been fabricated using electroless technique and the diamond powder was electroless coated with NiCrB film. The copper powder have been mixed with the uncoated or coated diamond particles, milled, compacted and sintered at 900°C in a hydrogen atmosphere. The corrosion behavior of the copper composite samples has been investigated in 0.6 M NaCl, 0.1 M HCl and 0.5 M NaOH solutions using potentiodynamic polarization anodic and cathodic Tafel lines and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) linking with energy dispersive X-ray spectroscopy (EDS) has been used to investigate the surface morphology and the chemical composition of the coated layer. The results of the corrosion test illustrated that the coated and uncoated Cu/diamond composites suffer from corrosion to a different extent in various electrolytes. The lowest corrosion rate in all the studied media was recorded for Cu-10 Vf % D coated NiCrB composite compared with the massive copper or uncoated composite samples.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Corrosion Performance of Copper - Diamond Composites in Different Aqueous Solutions
    AU  - Z. Abdel Hamid
    AU  - Mona H. Gomaa
    AU  - H. B. Hassan
    Y1  - 2017/01/20
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajea.20160402.15
    DO  - 10.11648/j.ajea.20160402.15
    T2  - American Journal of Electromagnetics and Applications
    JF  - American Journal of Electromagnetics and Applications
    JO  - American Journal of Electromagnetics and Applications
    SP  - 39
    EP  - 49
    PB  - Science Publishing Group
    SN  - 2376-5984
    UR  - https://doi.org/10.11648/j.ajea.20160402.15
    AB  - In the present work copper/diamond composites, such as (Cu-10 Vf % diamond uncoated, Cu-30 Vf % diamond uncoated, Cu-10 Vf % diamond coated NiCrB and Cu-30 Vf % coated NiCrB) as heat sink materials have been fabricated using powder metallurgy and electroless techniques. The copper powder used in this study has been fabricated using electroless technique and the diamond powder was electroless coated with NiCrB film. The copper powder have been mixed with the uncoated or coated diamond particles, milled, compacted and sintered at 900°C in a hydrogen atmosphere. The corrosion behavior of the copper composite samples has been investigated in 0.6 M NaCl, 0.1 M HCl and 0.5 M NaOH solutions using potentiodynamic polarization anodic and cathodic Tafel lines and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) linking with energy dispersive X-ray spectroscopy (EDS) has been used to investigate the surface morphology and the chemical composition of the coated layer. The results of the corrosion test illustrated that the coated and uncoated Cu/diamond composites suffer from corrosion to a different extent in various electrolytes. The lowest corrosion rate in all the studied media was recorded for Cu-10 Vf % D coated NiCrB composite compared with the massive copper or uncoated composite samples.
    VL  - 4
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Corrosion Control and Surface Protection Laboratory, Central Metallurgical Research & Development Institute, CMRDI, Helwan, Cairo, Egypt

  • Corrosion Control and Surface Protection Laboratory, Central Metallurgical Research & Development Institute, CMRDI, Helwan, Cairo, Egypt

  • Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt

  • Sections