| Peer-Reviewed

Radial Atomic Properties of Excited States for Beryllium Atom (1s2 2s ns) (1s)

Received: 9 April 2016     Accepted: 3 June 2016     Published: 17 June 2016
Views:       Downloads:
Abstract

Some radial atomic properties of Be-atom in different excited states (1s2 2s 3s, 1s2 2s 4s, 1s2 2s 5s) (1s) have been obtained using two electron density function  (r1,r2) in order to solve Hartree-Fock equations using slater type orbitals using partitioning technique within the individual electronic shells of different configuration of Be-atom in position space. Radial expectations values for one electron  and two electrons , correlation coefficients , electron density at the nucleus , the nuclear magnetic shielding constant and The diamagnetic susceptibility have been calculated for these states of the same atom.

Published in American Journal of Modern Energy (Volume 2, Issue 1)
DOI 10.11648/j.ajme.20160201.11
Page(s) 1-4
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Hartree-Fock-Roothaan Method, Slater Type Orbitals, Two Electron Density Function, Radial Expectation Values, The Nuclear Magnetic Shielding Constant

References
[1] T. Koga and Y. Kawata, J. Chemical Physics, Vol. 117, No. 20, 9133-9137 (2002).
[2] T. Koga and H. Matsuyama, J. Chemical Physics, Vol. 120, No. 17, 7831- 7836 (2004).
[3] S. Goedecker and C. J. Umrigar, J. Physical Review Letters, Vol. 81, No. 4(1998) 866-868.
[4] M. Fukuda and K. Fujisawa, arXiv: 1010.4095, Vol. 2 (2011).
[5] K. E. Banyard and R. J. Mobbs, J. Chemical Physics, Vol. 75, No. 7 (1981) 3433-3442
[6] T. Koga and Y. Kawata, J. Chemical Physics, Vol. 117, No. 20 (2002) 9133-9137.
[7] C.Chen, J. The European Physical D, Vol.56, 303-309 (2010).
[8] T. Koga and H. Matsuyama, J. Theor Chem Acc, Vol.115, 59–64 (2006).
[9] H. Matsuyama and T. Koga, J. Computational And Applied Mathematics, Vol.233, 1584-1589 (2010).
[10] T. Koga and H. Matsuyama, J. Theor Chem Acc, Vol. 118, 931–935(2007).
[11] K. H. ALBayati, Ph. D, Thesis Leicester University, England (1986).
[12] K. J. AL-Khafaji and A. F. Salman, J. Kufa Physics, Vol.4, No.1 (2012).
[13] V. B. Mushkin and R. M. Aminova, J. Molecular Structure (Theochem),Vol.572 (2001) 185-191.
[14] R. H. Romero, S. S. Gomez, J. Physics Letters A, Vol. 353 (2006) 190–193.
[15] J. Penuelas, J. Liusia, B. Martınez, and J. Fontcuberta, J. Electromagnetic Biology And Medicine, Vol. 23, No. 2(2004) 97–112.
[16] T. Koga and H. Matsuyama, J. Theor Chem Acc, Vol. 115(2006) 59–64.
[17] F. W. King and R. Dressel, J. Chem. Phys. Vol, 6449(1989).
[18] K. E. Banyard and R. J. Mobb J. Chem. Phys. Vol. 75, No.7 (1981).
[19] F. J. Galvez, E. Buendia and A.Sarsa J. Chem. Phys. Vol. 118, No. 15 (2003).
Cite This Article
  • APA Style

    Ruqaya Jabir Hadi, Ali Abid Abojassim, Laith Najam. (2016). Radial Atomic Properties of Excited States for Beryllium Atom (1s2 2s ns) (1s). American Journal of Modern Energy, 2(1), 1-4. https://doi.org/10.11648/j.ajme.20160201.11

    Copy | Download

    ACS Style

    Ruqaya Jabir Hadi; Ali Abid Abojassim; Laith Najam. Radial Atomic Properties of Excited States for Beryllium Atom (1s2 2s ns) (1s). Am. J. Mod. Energy 2016, 2(1), 1-4. doi: 10.11648/j.ajme.20160201.11

    Copy | Download

    AMA Style

    Ruqaya Jabir Hadi, Ali Abid Abojassim, Laith Najam. Radial Atomic Properties of Excited States for Beryllium Atom (1s2 2s ns) (1s). Am J Mod Energy. 2016;2(1):1-4. doi: 10.11648/j.ajme.20160201.11

    Copy | Download

  • @article{10.11648/j.ajme.20160201.11,
      author = {Ruqaya Jabir Hadi and Ali Abid Abojassim and Laith Najam},
      title = {Radial Atomic Properties of Excited States for Beryllium Atom (1s2 2s ns) (1s)},
      journal = {American Journal of Modern Energy},
      volume = {2},
      number = {1},
      pages = {1-4},
      doi = {10.11648/j.ajme.20160201.11},
      url = {https://doi.org/10.11648/j.ajme.20160201.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajme.20160201.11},
      abstract = {Some radial atomic properties of Be-atom in different excited states (1s2 2s 3s, 1s2 2s 4s, 1s2 2s 5s) (1s) have been obtained using two electron density function  (r1,r2) in order to solve Hartree-Fock equations using slater type orbitals using partitioning technique within the individual electronic shells of different configuration of Be-atom in position space. Radial expectations values for one electron  and two electrons , correlation coefficients , electron density at the nucleus , the nuclear magnetic shielding constant and The diamagnetic susceptibility have been calculated for these states of the same atom.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Radial Atomic Properties of Excited States for Beryllium Atom (1s2 2s ns) (1s)
    AU  - Ruqaya Jabir Hadi
    AU  - Ali Abid Abojassim
    AU  - Laith Najam
    Y1  - 2016/06/17
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajme.20160201.11
    DO  - 10.11648/j.ajme.20160201.11
    T2  - American Journal of Modern Energy
    JF  - American Journal of Modern Energy
    JO  - American Journal of Modern Energy
    SP  - 1
    EP  - 4
    PB  - Science Publishing Group
    SN  - 2575-3797
    UR  - https://doi.org/10.11648/j.ajme.20160201.11
    AB  - Some radial atomic properties of Be-atom in different excited states (1s2 2s 3s, 1s2 2s 4s, 1s2 2s 5s) (1s) have been obtained using two electron density function  (r1,r2) in order to solve Hartree-Fock equations using slater type orbitals using partitioning technique within the individual electronic shells of different configuration of Be-atom in position space. Radial expectations values for one electron  and two electrons , correlation coefficients , electron density at the nucleus , the nuclear magnetic shielding constant and The diamagnetic susceptibility have been calculated for these states of the same atom.
    VL  - 2
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, College of Science, Kufa Univ., Kufa, Iraq

  • Department of Physics, College of Science, Kufa Univ., Kufa, Iraq

  • Department of Physics, College of Science, Mosul Univ., Mosul, Iraq

  • Sections