| Peer-Reviewed

Critical Point Symmetry, X (5), in 154Gd

Received: 21 September 2016     Accepted: 28 October 2016     Published: 21 November 2016
Views:       Downloads:
Abstract

The positive-negative parity states, potential energy surfaces, V(β, γ), transition probabilities, B(E1), B(E2), staggering effect and electric monopole strength, X (E0/E2), values of 154Gd have been calculated within the frame work of the interacting boson approximation model (I BA − 1). The results obtained are compared to the available experimental, theoretical data and reasonable agreement has achieved. The potential energy surfaces, levels energy and transition probability ratios show that 154Gd is an X (5) candidate.

Published in American Journal of Modern Energy (Volume 2, Issue 6)
DOI 10.11648/j.ajme.20160206.12
Page(s) 43-47
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Levels Energy, Transition Probability, B(E1), B(E2), Electric Monopole Strength, X (E0/E2)

References
[1] J. Beller, N. Pietralla, J. Barea, M. Elvers, J. Endres, C. Fransen, J. Kotila, O. Moller, A. Richter, T. R. Rodriguez, C. Romig, D. avran, M. Scheck, L. Schnorrenberger, K. Sonnabend, V. Werner, A. Zilges, and M. weidinger., “Constraint on 0νββ Matrix Elements from a Novel Decay Channel of the Scissors Mode: The Case of 154Gd”, Phys. Rev. Lett., V. 111, 172501, (2013).
[2] Wen-Te Liao, Adriana Palffy, and Christoph H. Keitel, Three-beam setup for coherently controlling nuclear-state popula-tion”,Phys. Rev. C 87, 054609,(2013).
[3] N. D. Scielzo, J. E. Escher, J. M. Allmond, M. S. Basunia, C. W. Beausang, L. A. Bernstein, D. L. Bleuel, J. T. Burke, R. M. Clark, F. S. Dietrich, P. Fallon, J. Gibelin, B. L. Gold-blum, S. R. Lesher, M. A. McMahan, E. B. Norman, L. Phair, E. Rodriguez-Vieitez, S. A. Sheets, I. J. Thompson, and M. Wiedeking, “Statistical γ rays in the analysis of surrogate nu-clear reactions”, Phys. Rev. C 85, 054619,(2012).
[4] J. F. Sharpey-Schafer, S. M. Mullins, R. A. Bark, J. Kau F. Komati, E. A. Lawrie, J. J. Lawrie, T. E. Madiba, P. Maine and 4 more, “Congruent band structures in 154Gd: Configuration-dependent pairing, a double vacuum and lack ofβ -vibrations”, The European Physical Journal A,47, 5,(2011).
[5] J. F. Sharpey-Schafer, T. E. Madiba, S. P. Bvumbi, E. A. Lawrie, J. J. Lawrie, A. Minkova, S. M. Mullins, P. Papka, D. G. Rouxand 1 more, “Blocking of coupling to the 0+ ex-2 citation in 154Gd by the [505]11/2− neutron in 155 Gd”,The European Physical Journal A, 47, 6,(2011).
[6] N. D. Scielzo, J. E. Escher, J. M. Allmond, M. S. Basunia, C. W. Beausang, L. A. Bernstein, D. L. Bleuel, J. T. Burke, R. M. Clark, F. S. Dietrich, P. Fallon, J. Gibelin, B. L. Gold-blum, S. R. Lesher, M. A. McMahan, E. B. Norman, L. Phair, E. Rodriquez-Vieitez, S. A. Sheets, I. J. Thompson, and M. Wiedeking, “Measurement of γ-emission branching ratios for Gd154,156,158 compound nuclei: Tests of surrogate nuclear reaction approximations for (n,γ) cross sections”, Phys. Rev. C 81, 034608,(2010).
[7] N. D. Scielzo, L. A. Bernstein, D. L. Bleuel, J. T. Burke1, S. R. Lesher, E. B. Norman, S. A. Sheets, M. S. Basunia, R. M. Clark, P. Fallon, J. Gibelin, B. Lyles, M. A. McMahan, L. G. Moretto, L. W. Phair, E. Rodriguez-Vieitez, M. Wiedeking, J. M. Allmond and C. W. Beausang, “Determininig the (n, γ)(n, γ) cross section of 153Gd using surrogate reactions”, AIP Conf. Proc., 1005,109, (2008).
[8] J. F. Sharpey-Schafer, S. M. Mullins, R. A. Bark, E. Gue-orguieva, J. Kauc, F. Komati, J. J. Lawrie, P. Maine, A. Minkova, S. H. T. Murray, N. J. Ncapayi and P. Vymers, “Shape Transitional Nuclei: What can we learn from the Yrare States? or Hello the Double Vacuum; Goodbye β-vibrations!”, AIP Conf. Proc., 1012, 19 (2008).
[9] A. Dewald, O. Moller, D. Tonev, A. Fitzler, B. Saha, K. Jessen, S. Heinze, A. Linnemann, J. Jolie and 19 more, “Shape Changes and test of the critical-point symmetry X(5) in N = 90 nuclei”, The European Physical Journal A,20,173,(2003).
[10] W. D. Kulp, J. L. Wood, K. S. Krane, J. Loats, P. Schmelzen-bach, C. J. Stapels, R.-M. Larimer, and E. B. Norman, “N=90 region: The decay of Eu154 to Gd154”, Phys. Rev. C 69, 064309, (2004).
[11] Buganu1 P and Budaca R, “Sextic potential for γ -rigid prolate nuclei”, Journal of Physics G, V. 42, 105201, (2015).
[12] H. Sabri, “Spectral statistics of rare-earth nuclei: Investigation of shell model configuration effect”, Nuclear Physics A, 941, 364, (2015).
[13] E. Ganioglu, R. Wyss, and P. Magierski, “Properties of N=90 isotones within the mean field perspective”, Phys. Rev. C 89, 014311, (2014).
[14] J. B. Gupta, “Test of the Grodzins product rule in N = 88 iso-tones and the role of the Z = 64 subshell”, Phys. Rev. C 89, 034321, (2014).
[15] Nikolay Minkov and Phil Walker, “Influence of the octupole mode on nuclear high-K isomeric properties”, The Royal Swedish Academy of Sciences, Physica Scripta, Volume 89, Number 5,(2014).
[16] Harun Resit Yazar, “Low-lying (K π =0+) states of Gadolinium isotopes”, Pramana J. Phys., 81, 579, (2013).
[17] J. Kotila, K. Nomura, L. Guo, N. Shimizu, and T. Ot-suka, “Shape phase transitions in the interacting boson model: Phenomenological versus microscopic descriptions”, Phys. Rev. C 85, 054309, (2012).
[18] N. Minkov, S. Drenska, M. Strecker, W. Scheid, and H. Lenske, “Non-yrast nuclear spectra in a model of coherent quadrupole-octupole motion”, Phys. Rev. C 85, 034306, (2012).
[19] N. Minkov and Phil Walker, “Magnetic moments of K isomers as indicators of octupole collectivity”, The European Physical Journal A, 48, 80, (2012).
[20] M. S. Nadirbekov, G. A. yuldasheva, N. Minkov and W. Scheid, “Collective excited states in even-even nuclei with quadrupole and octupole deformations”, Int. J. Mod. Phys. E 21, 1250044, (2012).
[21] Dai Lian-Rong, Teng Wei-Xin, Pan Feng and Wang Sheng-Hua, “An Alternative Interacting Boson Model Description of The N = 90 Nuclei”, Chinese Physics Letters, 28, 052101, (2011).
[22] L. M. Robledo, R. R. Rodriguez-Guzmon, and P. Sar-riguren, “Evolution of nuclear shapes in medium mass iso-topes from a microscopic perspective”, Phys. Rev. C 78, 034314, (2008).
[23] G. Puddu, O. Scholten, T. Otsuka, “Collective Quadrupole States of Xe, Ba and Ce in the Interacting Boson Model”, Nucl. Phys. A, 348, 109, (1980).
[24] A. Arima and F. Iachello “Interacting boson model of Collective states: The vibrational limit.”, Ann. Phys., 99, 253, (1976).
[25] A. Arima and F. Iachello, “Interacting boson model of collec-tive states: The rotational limit”, Ann. Phys., 111, 201, (1978).
[26] Arima A. and Iachello F., “Interacting boson model of collec-tive states: The O(6) limit.”, Ann. Phys., 123, 468, (1979).
[27] J. N. Ginocchio and M. W. Kirson, “An intrinisic state for the in]teracting boson model and its relationship to the Bohr-Mottelson approximation”, Nucl. Phys. A, 350, 31, (1980).
[28] Scholten O., “The programm package PHINT (1980) version”, internal report KVI-63, Gronigen: Keryfysisch Versneller In stitut 1979.
[29] C. W. Reich, “Adopted levels, gammas for 154Gd”, Nuclear Data Sheets 110, 2257 (2009).
[30] B. Pritchenko, M. Birch, B. Singh and M. Horoi, ”Tables of E2 transition probabilities from the first 2+ states in even-Even nuclei”, Atom. Dat. Nucl. Tab., 107, 1-139, (2016).
[31] J. O. Rasmussen, “Theory of E0 transitions of spheroidal nu-clei.” Nucl.Phys., 19, 85, (1960).
[32] A. D. Bell, C. E. Aveldo, M. G. Davidson and J. P. Davidson “Table of E0 conversion probability electronic factors.”, Can. J. Phys., 48, 2542, (1970).
Cite This Article
  • APA Style

    Salah A. Eid, Sohair M. Diab. (2016). Critical Point Symmetry, X (5), in 154Gd. American Journal of Modern Energy, 2(6), 43-47. https://doi.org/10.11648/j.ajme.20160206.12

    Copy | Download

    ACS Style

    Salah A. Eid; Sohair M. Diab. Critical Point Symmetry, X (5), in 154Gd. Am. J. Mod. Energy 2016, 2(6), 43-47. doi: 10.11648/j.ajme.20160206.12

    Copy | Download

    AMA Style

    Salah A. Eid, Sohair M. Diab. Critical Point Symmetry, X (5), in 154Gd. Am J Mod Energy. 2016;2(6):43-47. doi: 10.11648/j.ajme.20160206.12

    Copy | Download

  • @article{10.11648/j.ajme.20160206.12,
      author = {Salah A. Eid and Sohair M. Diab},
      title = {Critical Point Symmetry, X (5), in 154Gd},
      journal = {American Journal of Modern Energy},
      volume = {2},
      number = {6},
      pages = {43-47},
      doi = {10.11648/j.ajme.20160206.12},
      url = {https://doi.org/10.11648/j.ajme.20160206.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajme.20160206.12},
      abstract = {The positive-negative parity states, potential energy surfaces, V(β, γ), transition probabilities, B(E1), B(E2), staggering effect and electric monopole strength, X (E0/E2), values of 154Gd have been calculated within the frame work of the interacting boson approximation model (I BA − 1). The results obtained are compared to the available experimental, theoretical data and reasonable agreement has achieved. The potential energy surfaces, levels energy and transition probability ratios show that 154Gd is an X (5) candidate.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Critical Point Symmetry, X (5), in 154Gd
    AU  - Salah A. Eid
    AU  - Sohair M. Diab
    Y1  - 2016/11/21
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajme.20160206.12
    DO  - 10.11648/j.ajme.20160206.12
    T2  - American Journal of Modern Energy
    JF  - American Journal of Modern Energy
    JO  - American Journal of Modern Energy
    SP  - 43
    EP  - 47
    PB  - Science Publishing Group
    SN  - 2575-3797
    UR  - https://doi.org/10.11648/j.ajme.20160206.12
    AB  - The positive-negative parity states, potential energy surfaces, V(β, γ), transition probabilities, B(E1), B(E2), staggering effect and electric monopole strength, X (E0/E2), values of 154Gd have been calculated within the frame work of the interacting boson approximation model (I BA − 1). The results obtained are compared to the available experimental, theoretical data and reasonable agreement has achieved. The potential energy surfaces, levels energy and transition probability ratios show that 154Gd is an X (5) candidate.
    VL  - 2
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Physics Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt

  • Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt

  • Sections