| Peer-Reviewed

A Model for Organic Matter of Fields Fertilized with Anaerobic Digestion Reactor Effluent

Received: 17 May 2021     Accepted: 28 May 2021     Published: 30 October 2021
Views:       Downloads:
Abstract

Soil fertility in agriculture is maintained by recalcitrant organic matter in manures and crop residues that are recycled to the fields. In some countries crop residues are burned in the field and in others these are collected and burned in furnaces as a source of renewable energy. These practices reduce the organic matter of the soils which is essential for their fertility. Anaerobic digestion installations convert manures and crop residues (mainly straw) into carbon dioxide, methane and other components. There remains a residue of recalcitrant organic material. The methane is is used as a source of renewable energy. The objective of this study is to determine the reduction in soil organic matter due to the anaerobic digestion of straw and cattle manure. The dynamics of the decay process of straw in the soil has been applied to the anaerobic digestion of these substrates. The decay of the organic material in the effluent of anaerobic digestion installations recycled to the fields has been modelled and compared to the decay of the substrates in the soil, without anaerobic digestion. The few field data on the effect of the effluent of anaerobic digestion reactor show no or little variation, compared to those when the substrates are directly applied to the fields. Around 45% of the energy content of straw and manures can be used as a source of renewable energy. The contribution to the soil organic matter of recycled effluent is 85% of that of the substrates directly applied to the soil.

Published in American Journal of Modern Energy (Volume 7, Issue 5)
DOI 10.11648/j.ajme.20210705.11
Page(s) 75-81
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

Soil Organic Matter, Renewable Energy, Anaerobic Digestion, Straw, Cattle Manure, Bio-methane

References
[1] Haishui Yang, A C, Jinxia Feng A, Martin Weih B et al. Yield reduction of direct-seeded rice under returned straw can be mitigated by appropriate water management improving soil phosphorus availability Crop and Pasture Science 71 (2) 134-146 Year.
[2] Sanderman, J., Hengl, T. and Fiske, G. J. Soil carbon debt of 12,000 years of human land use PNAS September 5, 2017 114 (36) 9575-9580.
[3] Roper, W. R., Robarge W. P., Osmond, D. L. and Heitman, J. L. Comparing Four Methods of Measuring Soil Organic Matter in North Carolina Soils 2019 Soil Sci. Soc. Am. J. 83: 466–474.
[4] Raymond R. Weil, R. J. and Brady, N. C. Nature and Properties of Soils, 15th Edition Pearson Columbus, 2017 pages 1-1028.
[5] Lehmann J. and Kleber M. The contentious nature of soil organic matter Nature | vol 528 | December 2015 pages 60-68.
[6] Batjes, N. H. Total carbon and nitrogen in the soils of the world European journal of soil science June 1996 47 pages 151-163.
[7] Bot, A. and Benites, J. The importance of soil organic matter: Key to drought-resistant soil and sustained food and production. FAO soils bulletin 80. 2005 pages 1-94 Rome: Food and Agricultural Organisation; 2005.
[8] Oldfield, E. E., Bradford, M. A. and Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 2019; 5, 15-32.
[9] Trivedi, A, Verma, A. R., Kaur, S., Jha, B. et al. Sustainable bio-energy production models for eradicating open field burning of paddy straw in Punjab, India. Energy 127 (2017) pages 310-317.
[10] Hendriksen, C. E. Experience with straw firing in Danish combined heat and power plants in Hackl A. (ed). Kaleidoskop Biomasse. Vienna: Österreichische Akademie der Wissenschaften:; 2018 pages 1-19.
[11] Mac an Bhaird S. T., Hemmingway P., Walsh E. et al. Bubbling fluidised bed gasification of wheat straw–gasifier performance using mullite as bed material Chemical Engineering Research and Design Volume 97, May 2015, Pages 36-44.
[12] Decorte M., Tessens S., Fernández D. et al. Mapping the state of play of renewable gases in Europe Renewable Gas trade centre in Europe Roma, Italy, 2020 pages 1-60.
[13] Sam, A., Xiang Bi, B., and Farnsworth, D. How Incentives Affect the Adoption of Anaerobic Digesters in the United States Sustainability 2017, 9, 1221.
[14] Lei Zheng, L., Jingang Chen J., Mingyue Zhao, M. et al. What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry? Sustainability 2020, 12, 1490.
[15] Meyer, A. K. P., E. A. Ehimen, E. A., Holm-Nielsen, J. B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production Biomass and Bioenergy Volume 111, April 2018, Pages 154-164.
[16] W. J. Oosterkamp Use of volatile solids from biomass for energy production in Gupta, V., Treichel, H., Kuhad, R. and Rodriguez-Couto, S. ed. Recent developments in bioenergy research Elsevier 2020, Pages 131-145.
[17] Ebertseder, T., Engels, C., Heyn, J. et al. Humusbilanzierung Eine Methode zur Analyse und Bewertung der Humusversorgung von Ackerland Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) Speyer, Germany. 2014 pages 1-21.
[18] Prays, N. Effects of Biogas Residues on Yield Formation and Soil Organic Carbon Stocks dissertation, Technischen Universität Berlin, 2018 Agronomy 2020, 10, 379.
[19] Swain, F. Composition of marsh gases in the central and eastern United States Applied Geochemistry Volume 1, Issue 2, March–April 1986, Pages 301-305.
[20] Bol, J. Moeras of Brongas Grondboor en Hamer nov 1991 pages 150-153.
[21] Chynoweth D. P. and Isaacson R. Anaerobic digestion of biomass” Elsevier Applied Science UK 1987, pages 1-278.
[22] Gunnerson, C. G., Stuckey, D. C., Greeley, M., and Skrinde, R. T. Anaerobic digestion: Principles and practices for biogas systems. United States The International Bank for Reconstruction and Development/The Worldbank, 1986 pages 1-154.
[23] Angelidaki, I., Alves, M., Bozonella, D. et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays, Water Sci. Technol., 2009; 595: 927-934.
[24] Verdrenne, F. Beline, Dabert, P. and Bernet, N The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes “ Bioresource Technology 99: 146–155-2008.
[25] Triolo, J. M., Sommer, S. G., Møller, H. B., Weisbjerg M. R. and Jiang, X. Y. “A new algorithm to characterise biodegradability of bio-matter during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresource Technology 2011; 102: 9395-9402.
[26] Sauerbeck, D. R. and Gonzalez, M. A. "Field decomposition of carbon-14-labelled plant residues in various soils of the Federal Republic of Germany and Costa Rica" in " Soil organic matter studies" in proceedings of a symposium on soil organic matter studies jointly organized by the international atomic energy agency and the food and agriculture organization of the united nations in co-operation with Agrochimica and held in Braunschweig, 6-10 september 1976, Vienna, IAEA; 1977; pp. 159-169.
[27] Verloop, J., Hilhorst, G. J., Pronk, A. A. et al. Organic matter dynamics in an intensive dairy production system on a Dutch Spodosol. Geo- derma 2015: 237-238: 159-167.
[28] A. Kool, A., Hilhorst, G. J. and van der Vegte, D. Z. “Realisatie van mestvergisting op de Marke - Onderzoek en realisatie” Rapport 50 CLM-Rapport 608-2005, CLMCulenburg, The Netherlands, 2005, pages 1-18.
[29] Slotjuk Weizenstroh verschiedene Vermahlung in H. Oechsner ed. Forschungsinitiative und -projekte Der Landwirt als Energiewirt Biogastag Baden-Württemberg 13. März 2012, University of Hohenheim, Germany, 2012 pages 1-43.
[30] Xavier, C. A. N., Moset, V., Wahid, R., Møller, H. B. The efficiency of shredded and briquetted wheat straw in anaerobic co-digestion with dairy cattle manure. Biosystems Engineering 2015; 139: 16 - 24, 2015.
[31] Møller, H. B., Moset, V., Brask, M., Weisbjerg, M. R. and Lund P. Feces composition and manure derived methane yield from dairy cows: Influence of diet with focus on fat supplement and roughage type. Atmospheric Environment 2014; 94: 36-43.
[32] Bakker, Wolter Elbersen, W, Poppens, R and Lesschen, J. P. Rice straw and Wheat straw Potential feedstocks for the Biobased Economy NL Agency NL Energy and Climate Change Utrecht, June 2013 pages 1-31.
[33] del Río, J. C., Rencoret, J., Prinsen, P., Martínez, A. T., Ralph, J. and Gutieŕrez A. Structural Characterization of Wheat Straw Lignin as Revealed by Analytical Pyrolysis, 2D- NMR, and Reductive Cleavage Methods J. Agric. Food Chem. 2012, 60, 5922−5935.
[34] Beyaert, R. P. and Voroney, R. P. Estimation of decay constants for crop residues measured over 15 years in conventional and reduced tillage systems in a coarse-textured soil in southern Ontario. Canadian journal of soil science 2011: 91 (6): 985-995.
[35] Antonczyk, S. R. Arthur, R. and P. Scherer, P. Straw as a Sustainable Farm-Based Feedstock for Biogas. Proceedings EBA Workshop; 2017; Brussels Belgium: European Biogas association 2017, pages 1-23.
[36] De Haan, S. “Humus, its formation, its relation with the mineral part of the soil, and its significance for soil productivity (IASM-211/12) IAEA Vienna, Austria, 1977 pages 10-21.
[37] Heim, A. and Schmidt, M. W. I. Lignin is not a main contributor to the stable soil organic carbon fraction Soil Science and Biogeography Group, Department of Geography, University of Zurich, Switzerland, 2005 pages 1-2.
[38] H. Dauser, "Economic Considerations of the Straw Preparation Agents de Economizer Technology using the example of biogas plants in the UK", in R. Heizel ed. Tagungsband Biogas aus Stroh Hildesheim, ProFair consult+ Project GmbH, 2017, pp 69-72.
[39] Oechsner, H."2012. Forschungsinitiative und -projecte zur bio- gasforschung. In: Kranert, M. (Ed.), 8e Biogastag Baden Wuertenberg 13 Maerz 2012 Hohenheim. Essen, Oldenbourg Industrie Verlag, 2012, pp. 1-144.
[40] Sherrard, A. "Breaking the straw to biogas conundrum", Bioenergy International, June 2016.
[41] Fink, J."Anaerobic Digestion of High Solid Material like Farm Yard Manure", Xergi, Støvring- Danmark. no date, pages 1-22.
[42] Arikan, A., Mulbry, W., and Lansing, S. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure Waste Management 43 (2015) pages 108–113.
[43] Jerger, D. E., Conrad, J. R., Fannin, K. F., Cynoweth, D. P., 1982. Bio- gasification of woody biomass. In: White, J. W., McGrew, W., Sutton, M. R. (Eds.), Energy from Biomass and Wastes VI. Institute of Gas Technology, Chicago Il, USA, pages 341-372.
[44] Scherer, P. 2011 “Wirkungsweise von Spurenelementen in der Biovergasungskette” Fachtagung “Spurenelementen in Biogasanlagen” Energie Agentur Götingen Germany, 2011, pages 1-48.
[45] Engler, N. Spurenelementkonzentrationen und biologische Aktivität in NaWaRo- Biogasfermentern" Dissertation Universität Rostock, Germany 2015 pages 1-107.
[46] Ritter; J., Seborg, R. M and Mitchell, R. L. Factors affecting quantitative determination of lignin 72 percent sulfuric acid method Ind. Eng. Chem. Anal. Ed. 1932, 4, 2, 202–204.
[47] Klason P. Contributions to a more exact knowledge of the chemical composition of spruce wood, part I. Pap. Trade J. 1922, 74 (18), 45–51.
[48] Dumas, C., Silva Ghizzi Damascenoc, G., Barakatc, A., H. Carrèrea, H J-P. Steyera, J-P and Rouauc, X. Effects of grinding processes on anaerobic digestion of wheat straw Industrial crops and products 2015: 74: 450-456.
[49] Horváth, I. S., del Pilar Castillo, M., Schnürer, A., Agnihotri, S., Ylitervo, P. and Edström, M. Utilization of straw pellets and briquettes as co-substrates at biogas plants Stockholm Sweden: Energiforsk AB 2015 pages 1-62.
[50] Sambusiti, C. Physical, chemical and biological pretreatments to enhance biogas production from lignocellulosic substrates Milan, Italy: Politecnico di Milano, 2013 pages 1-206.
[51] Awais, M., Alvarado-Morales, Tsapekos, P., Gulfraz, M. and Angelidaki, I. Methane Production and Kinetic Modeling for Co-digestion of Manure with Lignocellulosic Residues Energy Fuels 2016, 30, 12, 10516–10523.
[52] Hindrichsen, I. K., Kreuzer, M., Madsen, J. and Bach Knudsen, K. E. Fiber and Lignin Analysis in Concentrate, Forage, and Feces: Detergent Versus Enzymatic-Chemical Method Dairy Sci. 89: 2168–2176-2016.
[53] Yang, Q, Wang, H., Larson, R., and Runge T. Comparative Study of Chemical Pretreatments of Dairy Manure for Enhanced Biomethane Production BioResources 2017 12 (4), 7363-7375.
[54] Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48 (8), 3713-3729.
[55] Liao, W., Liu, Y., Liu, C., Wen, Z., Chen, S. 2006. Acid hydrolysis of fibers from dairy manure. Bioresource Technology, 1687–1695.
[56] Wen, Z., Liao, W., Chen, S. 2004. Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresource Technology, 91, 31-39.
[57] Joute, Y., el Bari, H. – Belhadj, S. Semi-continuous anaerobic co-digestion of cow manure and banana waste: effects of mixture ratio Applied ecology and environmental research 14 (2): 337-349.
[58] Wilen, C., Moilanen, A. and Kurkula, E. Biomass feedstock analyses VTT publications 282 Espoo 1996 pages 1-4.
[59] Waldheim, L. and Nilsson, T. Heating values from gases of biomass gasification TPS 01/16 TPS Thermiska Processer AB Nyköping, Sweden pages 1-60.
[60] Cappannelli, M., McGlade, C. and Peter Zeniewski, P. Outlook for biogas and biomethane IEA Paris, 2020, p 1-93.
[61] Hoyer, K. Hulteberg, C,. Svensson, M., Jernberg, J., and øyvind Nørregård, Ø. Biogas Upgrading - Technical Review 2016 Energiforsk report 2016: 275 Sweden pages 1-75.
[62] Waardenburg, I. Diemen-34 levert eerste stroom, Technisch weekblad 2012 pages 1-2.
[63] Pieper, M. Errichtung eines strohbefeuerten Heizkraftwerkes - BEKW Bioenergiekraftwerk Emsland BEKW Bioenergiekraftwerk Emsland, Emlichheim Germany 2016, pp 1-96.
[64] Urban, W. Biomethane injection into natural gas networks ch 16 in Wellinger, A., Murphy J. and Baxter D. The Biogas Handbook Science, Production and Applications Woodhead Publishing Series in Energy 2013 pages 378-403.
[65] Gunnarsson, I., Aradóttir E. D., Oelkers, E. H. et al. The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site International Journal of Greenhouse Gas Control Volume 79, Dec. 2018, Pages 117-126.
[66] Verduyn, M., Geerlings, H. and van Mossel, G. Review of the various CO2 mineralization product forms Energy Procedia 4 (2011) 2885–2892.
[67] Gupta D. K. et al. (2020) Role of Biochar in Carbon Sequestration and Greenhouse Gas Mitigation. In: Singh J., Singh C. (eds). Biochar Applications in Agriculture and Environment Management. Springer, Cham.
[68] van der Vegte, Z. Bodemkwaliteit neemt niet af op De Marke. Wageningen: Wageningen University and Research 2016.
[69] Vahlberg, C., Nordell, E., Wiberg, L., and Schnürer, A., “Method for correction of VFA loss in determination of dry matter in biomass” Svenskt Gastekniskt Center, Malmö, Sweden, 2013 pages 1-50.
[70] Timmerman, M, de Boer, H. C., Verdoes, N. and Schilder, H. Effect van vergisting op het orthofosfaat gehalte in rundermest en potentieel voor terugwinning Wageningen Livestoch Research, Wageningen, the Netherlands, 2018 pages 1-53.
[71] Barłóg P, Hlisnikovsk, L. and Kunzová E. Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization Agronomy 2020, 10, 379.
[72] Möller, K. Effects of biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems. Nutr Cycl Agroecosyst 2009 84: 179–202.
[73] Thomsen, I. K., Olesen, J., Møller, H. B., Sørensen, P., Christensen, B. T Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces. Soil Biol. Biochem 2013; 58: 82–87.
[74] Veeken, A., F. Adani, F., D. FangueiroD., and L. Stoumann JensenL. The value of recycling organic matter to soils EIP-AGRI Focus Group - Nutrient recycling Brussels Belgium: European Commission 2017.
[75] Körschens M, Der organische Kohlenstoff im Boden (Corg) – Bedeutung, Bestimmung, Bewertung Soil organic carbon (Corg) – importance, determination, evaluation Archives of Agronomy and Soil Science Vol. 56, No. 4c, August 2010, 375–392.
[76] Körschens M, Spitzl M. 1978. Methodische Untersuchungen zur Bestimmung des Ct – und Nt – Gehaltes im Boden. Arch. Acker- u. Pflanzenbau u. Bodenkd., Berlin. 22 (11): 705–711.
[77] Rogasik J, Körschens M, Rogasik H, Schnug E. 2007. C-Sequestrierungspotentiale Agrarisch genutzter Böden in Deutschland. In: Hüttl RF, Prechtel A, Bens O. Humusversorgung von Böden in Deutschland. Forschungsprojekt im Auftrag des Umweltbundesamtes, FuE-Vorhaben Förderkennzeichen 360 13 008.
[78] Baumecker M, Ellmer F, Kohn W. 2009. Statischer Nährstoffmangelversuch Thyrow. Dauerfeldversuche in Brandenburg und Berlin, Beiträge für eine nachhaltige landwirtschaftliche Bodennutzung. Herausgeber: Ministerium für Landliche Entwicklung, Umwelt und Verbraucherschutz, Potsdam. S. 129.
[79] Vander Linden, A. M. A., Van Veen, J. A. and Frissel, M. J. Modelling soil organic matter levels after long-term applications of crop residues, and farmyard and green manures. Plant Soil 101, 21–28 (1987).
[80] Koopmans C. and Bloem J. Soil quality effects of compost and manure in arable cropping Louis Bolk Institute 2018, Bunnik, Netherlands.
[81] Witing, F., Gebel, M., Kurzer, H. J., Friese, H. and Franko, U. Large-scale integrated assessment of soil carbon and organic matter-related nitrogen fluxes in Saxony (Germany) Journal of Enviriomnetal Management 237 (2019 ) 272-280.
Cite This Article
  • APA Style

    Willem Jan Oosterkamp. (2021). A Model for Organic Matter of Fields Fertilized with Anaerobic Digestion Reactor Effluent. American Journal of Modern Energy, 7(5), 75-81. https://doi.org/10.11648/j.ajme.20210705.11

    Copy | Download

    ACS Style

    Willem Jan Oosterkamp. A Model for Organic Matter of Fields Fertilized with Anaerobic Digestion Reactor Effluent. Am. J. Mod. Energy 2021, 7(5), 75-81. doi: 10.11648/j.ajme.20210705.11

    Copy | Download

    AMA Style

    Willem Jan Oosterkamp. A Model for Organic Matter of Fields Fertilized with Anaerobic Digestion Reactor Effluent. Am J Mod Energy. 2021;7(5):75-81. doi: 10.11648/j.ajme.20210705.11

    Copy | Download

  • @article{10.11648/j.ajme.20210705.11,
      author = {Willem Jan Oosterkamp},
      title = {A Model for Organic Matter of Fields Fertilized with Anaerobic Digestion Reactor Effluent},
      journal = {American Journal of Modern Energy},
      volume = {7},
      number = {5},
      pages = {75-81},
      doi = {10.11648/j.ajme.20210705.11},
      url = {https://doi.org/10.11648/j.ajme.20210705.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajme.20210705.11},
      abstract = {Soil fertility in agriculture is maintained by recalcitrant organic matter in manures and crop residues that are recycled to the fields. In some countries crop residues are burned in the field and in others these are collected and burned in furnaces as a source of renewable energy. These practices reduce the organic matter of the soils which is essential for their fertility. Anaerobic digestion installations convert manures and crop residues (mainly straw) into carbon dioxide, methane and other components. There remains a residue of recalcitrant organic material. The methane is is used as a source of renewable energy. The objective of this study is to determine the reduction in soil organic matter due to the anaerobic digestion of straw and cattle manure. The dynamics of the decay process of straw in the soil has been applied to the anaerobic digestion of these substrates. The decay of the organic material in the effluent of anaerobic digestion installations recycled to the fields has been modelled and compared to the decay of the substrates in the soil, without anaerobic digestion. The few field data on the effect of the effluent of anaerobic digestion reactor show no or little variation, compared to those when the substrates are directly applied to the fields. Around 45% of the energy content of straw and manures can be used as a source of renewable energy. The contribution to the soil organic matter of recycled effluent is 85% of that of the substrates directly applied to the soil.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A Model for Organic Matter of Fields Fertilized with Anaerobic Digestion Reactor Effluent
    AU  - Willem Jan Oosterkamp
    Y1  - 2021/10/30
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ajme.20210705.11
    DO  - 10.11648/j.ajme.20210705.11
    T2  - American Journal of Modern Energy
    JF  - American Journal of Modern Energy
    JO  - American Journal of Modern Energy
    SP  - 75
    EP  - 81
    PB  - Science Publishing Group
    SN  - 2575-3797
    UR  - https://doi.org/10.11648/j.ajme.20210705.11
    AB  - Soil fertility in agriculture is maintained by recalcitrant organic matter in manures and crop residues that are recycled to the fields. In some countries crop residues are burned in the field and in others these are collected and burned in furnaces as a source of renewable energy. These practices reduce the organic matter of the soils which is essential for their fertility. Anaerobic digestion installations convert manures and crop residues (mainly straw) into carbon dioxide, methane and other components. There remains a residue of recalcitrant organic material. The methane is is used as a source of renewable energy. The objective of this study is to determine the reduction in soil organic matter due to the anaerobic digestion of straw and cattle manure. The dynamics of the decay process of straw in the soil has been applied to the anaerobic digestion of these substrates. The decay of the organic material in the effluent of anaerobic digestion installations recycled to the fields has been modelled and compared to the decay of the substrates in the soil, without anaerobic digestion. The few field data on the effect of the effluent of anaerobic digestion reactor show no or little variation, compared to those when the substrates are directly applied to the fields. Around 45% of the energy content of straw and manures can be used as a source of renewable energy. The contribution to the soil organic matter of recycled effluent is 85% of that of the substrates directly applied to the soil.
    VL  - 7
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Independent Scholar, Oosterbeek, Netherlands

  • Sections