An eco-friendly high-swelling superabsorbent composite CMC-g-poly(acrylic acid - 2-acrylamido-2-methylpropane sulfonic acid)/Attapulgite based on carboxymethyl cellulose (CMC) and inorganic clay Attapulgite (ATP) was prepared via a grafting copolymerization of acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), using with N, N-methylenebisacrylamide (MBA) as a cross-linking agent, ammonium persulfate (APS) as an initiator and polyethylene glycol(PEG) as a phase transfer catalyst. The effects of polymerization conditions on the swelling ability of the superabsorbent composite were investigated. The results indicated that the prepared superabsorbent had high water absorbency. Saturated water absorbencies of the superabsorbent reached (864 g.g-1) for distilled water and (72 g.g-1) for 0.9 wt% NaCl aqueous solution respectively. The water absorbency of the composites was dependent on the pH of external solutions and used saline solutions.
Published in | American Journal of Polymer Science and Technology (Volume 2, Issue 1) |
DOI | 10.11648/j.ajpst.20160201.12 |
Page(s) | 11-19 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Superabsorbent Composite, Carboxymethyl Cellulose, Attapulgite, Swelling Behavior
[1] | Sharma S., Dua A. Malik A. Poly aspartic acid based superabsorbent polymers. Euro. Polym. J., 2014, 59: 363-376. |
[2] | Shi W. D., Dumont M. J., Ly Babacar E. Synthesis and properties of canola protein-based superabsorbent hydrogels. Euro. Polym. J., 2014, 54: 172-180. |
[3] | Zhang X. Y., Wang X. P., Li L., Zhang S. S., Wu R. N. Preparation and swelling behaviors of a high temperature resistant superabsorbent using tetraallylammonium chloride as crosslinking agent. React. Funct. Polym., 2015, 87: 15-21. |
[4] | Guilherme M. R., Reis A. V., Paulino A. T., Moia T. A., Mattoso L. H. C., Tambourgi E. B. Pectin-based polymer hydrogelas a carrier for release of agricultural nutrients and removalof heavy metals from wastewater. J. Appl. Polym. Sci., 2010, 117:3146–3154. |
[5] | Puoci F., Iemma F., Spizzirri U. G., Cirillo, G., Curcio, M., Picci, N. Polymer in agriculture: a review. Am J. Agr. Biol. Sci., 2008, 3: 299–314. |
[6] | Ooya T., Mori H., Terano M., Yui N. Synthesisofabiodegradable polymeric supramolecular assembly for drugdelivery. Macromol. Rapid Commun., 1995, 16: 259–263. |
[7] | Murthy P. S. K., Murali Mohan Y., Varaprasad K., Sreedhar B., Mohana Raju K. First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J. Colloid Interf. Sci., 2008, 318: 217–224. |
[8] | Kangwansupamonkon W., Jitbunpot W., Kiatkamjornwong S. Photocatalytic efficiency of TiO2/poly[acrylamide-co-(acrylic acid)] composite for textile dye degradation. Polym. Degrad. Stab., 2010, 95: 1894–1902. |
[9] | Kasgoz H., Durmus A. Dye removal by a novel hydrogelclay nanocomposite with enhanced swelling properties. Polym. Adv. Technol., 2008, 19: 838–845. |
[10] | Zhang L. M., Wang G. H., Xing Z. Polysaccharide assisted incorporation of multiwalled carbon nanotubes intosol-gel silica matrix for electrochemical sensing. J. Mater. Chem., 2011, 21: 4650–4656. |
[11] | Brandl F., Sommer F., Goepferich A. Rational design ofhydrogels for tissue engineering: impact of physical factors oncell behavior. Biomaterials, 2007, 28: 134–146. |
[12] | Lee K. Y., Mooney D. J. Hydrogels for tissue engineering. Chem. Rev., 2001, 101: 1869–1879. |
[13] | Zohuriaan-Mehr M. J., Kabiri K. Superabsorbent polymer materials: A review. Iran. Polym. J., 2008, 17: 451-477. |
[14] | Nasser R. O., Silva M. V., Delgado J. M. P. Q., Goncalves M. P., Andrade C. T. Dynamic and Equilibrium Swelling of Biodegradable Starch-Based Superabsorbent Polymers. Defect Diff. Forum, 2008, 273-276: 126-131. |
[15] | Demitri C., Del Sol R., Scalera F., Sannino A., Vasapollo G., Maffezzoli A., Ambrosio L., Nicolais L. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J. Appl. Polym. Sci., 2008, 110: 2453-2460. |
[16] | ZhouY. M., Fu S. Y., Zhang L. L., Zhan H. Y. Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydr. Polym., 2013,97:429-435. |
[17] | Hua S. B., Wang A. Q. Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr. Polym., 2009, 75: 79-84. |
[18] | Zhang J. P., Wang Q., Wang A. Q. Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydr. Polym., 2007,68: 367. |
[19] | Wang W. B., Zheng Y. A., Wang A. Q. Syntheses and properties of superabsorbent composites based on natural guar gum and attapulgite. Polym. Adv. Technol., 2008, 19: 1852-1859. |
[20] | Mu Y. H., Du D. Y., Yang R. C., Xu Z. W. Preparation and performance of poly (acrylic acid– methacrylic acid)/montmorillonite microporous superabsorbent nanocomposite. Mater. Lett., 2015, 142: 94-96. |
[21] | Pourjavadi A., Hosseinzadeh H. Carrageenan-g-poly(acrylamide)/ poly (vinylsulfonic acid, sodium salt) as a novel semi-IPN hydrogel: Synthesis, characterization, and swelling behavior. Polym. Eng. Sci., 2007, 47:1388-1395. |
[22] | Suo A. L., Qian J. M., Yao Y., Zhang W. G. Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as anovel cellulose-based superabsorbent. J. Appl. Polym. Sci., 2007, 103:1382–1388. |
[23] | Li A., Wang A. Q., Chen J. M. Studies on poly (acrylic acid ) /attapulgite superabsorbent composite (I): Synthesis and characterization. J. Appl. Polym. Sci., 2004, 92: 1596-1603. |
[24] | Lee W. F., Yang L. G. Superabsorbent polymeric materials. XII. Effect of montmorillonite on water absorbency for poly (sodium acrylate) and montmorillonite nanocomposite superabsorbents. J. Appl. Polym. Sci., 2004, 92: 3422-3429. |
[25] | Kabiri K., Zohuriaan-Mehr M. J. Porous superabsorbent hydrogel composites: Synthesis, morphology and swelling rate. Macromol. Mater. Eng., 2004, 289: 653-661. |
[26] | Wu J. H., Wei Y. L., Lin J. M., Lin S. B. Study on starch-graft-acrylamide / mineral powder superabsorbent composite. Polymer, 2003, 44: 6513-6520. |
[27] | Lin J. M., Wu J. H., Yang Z., Pu M. L. Synthesis and Properties of Poly (acrylic acid)/Mica Superabsorbent Nanocomposite. Macromol. Rapid Commun., 2001, 22: 422-424. |
[28] | Wu J. H., Lin J. M., Zhou M., Wei C. Synthesis and properties of starch-graft- polyacrylamide/clay superabsorbent composite. Macromol. Rapid Commun., 2000,21: 1032-1034. |
[29] | Zheng Y. A., Li P., Zhang J. P., Wang A. Q. Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/ vermiculite superabsorbent composites. Euro. Polym. J., 2007, 43: 1691-1698. |
[30] | Zheng Y. A., Zhu Y. F., Wang A. Q. Highly efficient and selective adsorption of malachite green onto granular composite hydrogel. Chem. Eng. J., 2014, 257:66–73. |
[31] | Qi X., Liu M. Z., Chen Z. B. Liang R. Preparation and properties of diatomite composite superabsorbent. Polym. Adv. Technol., 2007, 18: 184-193. |
[32] | Uthirakumar P., Nahm K. S., Hahn Y. B., Lee Y.-S. Preparation of polystyrene/ montmorillonite nanocomposite using a new radical initiator-montmorillonite hybrid via in situ intercalative polymerization. Euro. Polym. J., 2004, 40: 2437–2444. |
[33] | Yang F., Li G., He Y. G., Ren F. X., Wang G. X. Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym., 2009,78: 95–99. |
[34] | Studies on poly (acrylic acid)/attapulgite superabsorbent composites. (II). Swelling behaviors of superabsorbent composites in saline solutions and hydrophilic solvent–water mixtures. Appl. Polym. Sci., 2004, 94(5), 1869-1876. |
[35] | Zhang J. P., Chen H., Wang A. Q. Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. Euro. Polym. J., 2005, 41: 2434-2442. |
[36] | Flory P. J. Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953. |
[37] | Chen J. W., Zhao Y. M. Relationship between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate superabsorbents. J. Appl. Poly. Sci., 2000, 75: 808-814. |
[38] | Chen J. W., Zhao Y. M. An efficient preparation method for superabsorbent polymers. J. Appl. Polym. Sci., 1999, 74, 119-124. |
[39] | Lanthong P., Nuisin R., Kiatkamjornwong S. Graft copolymerization, characterization, and degradation of cassava starch-gacrylamide/ itaconic acid superabsorbents. Carbohydr. Polym., 2006, 66: 229-245. |
[40] | Ma, G., Ran, F., Feng, E., Zhang, Z., & Lei, Z. (2016). Preparation and properties of an organic–inorganic composite superabsorbent based on attapulgite. J. Comp Mater, 50(14), 1865-1874. |
[41] | Castal D., Ricard A. Audebert R. Swelling of anionic and cationic starch-based superabsorbents in water and saline solution. J. Appl. Polym. Sci., 1990, 39: 11-29. |
[42] | Wang, Y., Shi, X., Wang, W., & Wang, A. (2013). Synthesis, characterization, and swelling behaviors of a pH-responsive CMC-g-poly (AA-co-AMPS) superabsorbent hydrogel. Turkish Journal of Chemistry, 37(1), 149-159. |
[43] | Liu, J., Wang, Q., Wang, A. (2007). Synthesis and characterization of chitosan-g-poly (acrylic acid)/sodium humate superabsorbent. Carbohdr. Polym, 70(2), 166-173. |
[44] | Bao, Y., Ma, J., & Li, N. (2011). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohdr. Polym, 84(1), 76-82. |
[45] | Pourjavadi, A., Harzandi, A. M., & Hosseinzadeh, H. (2004). Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Euro Poly J, 40(7), 1363-1370. |
APA Style
Fathelrahman Mohammed Soliman, Wu Yang, Hao Guo, Mahgoub Ibrahim Shinger, Ahmed Mahmoud Idris, et al. (2016). Preparation of Carboxymethyl Cellulose-g-Poly (Acrylic Acid - 2-Acrylamido-2-Methylpropane Sulfonic Acid)/Attapulgite Superabsorbent Composite. American Journal of Polymer Science and Technology, 2(1), 11-19. https://doi.org/10.11648/j.ajpst.20160201.12
ACS Style
Fathelrahman Mohammed Soliman; Wu Yang; Hao Guo; Mahgoub Ibrahim Shinger; Ahmed Mahmoud Idris, et al. Preparation of Carboxymethyl Cellulose-g-Poly (Acrylic Acid - 2-Acrylamido-2-Methylpropane Sulfonic Acid)/Attapulgite Superabsorbent Composite. Am. J. Polym. Sci. Technol. 2016, 2(1), 11-19. doi: 10.11648/j.ajpst.20160201.12
AMA Style
Fathelrahman Mohammed Soliman, Wu Yang, Hao Guo, Mahgoub Ibrahim Shinger, Ahmed Mahmoud Idris, et al. Preparation of Carboxymethyl Cellulose-g-Poly (Acrylic Acid - 2-Acrylamido-2-Methylpropane Sulfonic Acid)/Attapulgite Superabsorbent Composite. Am J Polym Sci Technol. 2016;2(1):11-19. doi: 10.11648/j.ajpst.20160201.12
@article{10.11648/j.ajpst.20160201.12, author = {Fathelrahman Mohammed Soliman and Wu Yang and Hao Guo and Mahgoub Ibrahim Shinger and Ahmed Mahmoud Idris and Emtenan Suliman Hassan}, title = {Preparation of Carboxymethyl Cellulose-g-Poly (Acrylic Acid - 2-Acrylamido-2-Methylpropane Sulfonic Acid)/Attapulgite Superabsorbent Composite}, journal = {American Journal of Polymer Science and Technology}, volume = {2}, number = {1}, pages = {11-19}, doi = {10.11648/j.ajpst.20160201.12}, url = {https://doi.org/10.11648/j.ajpst.20160201.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpst.20160201.12}, abstract = {An eco-friendly high-swelling superabsorbent composite CMC-g-poly(acrylic acid - 2-acrylamido-2-methylpropane sulfonic acid)/Attapulgite based on carboxymethyl cellulose (CMC) and inorganic clay Attapulgite (ATP) was prepared via a grafting copolymerization of acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), using with N, N-methylenebisacrylamide (MBA) as a cross-linking agent, ammonium persulfate (APS) as an initiator and polyethylene glycol(PEG) as a phase transfer catalyst. The effects of polymerization conditions on the swelling ability of the superabsorbent composite were investigated. The results indicated that the prepared superabsorbent had high water absorbency. Saturated water absorbencies of the superabsorbent reached (864 g.g-1) for distilled water and (72 g.g-1) for 0.9 wt% NaCl aqueous solution respectively. The water absorbency of the composites was dependent on the pH of external solutions and used saline solutions.}, year = {2016} }
TY - JOUR T1 - Preparation of Carboxymethyl Cellulose-g-Poly (Acrylic Acid - 2-Acrylamido-2-Methylpropane Sulfonic Acid)/Attapulgite Superabsorbent Composite AU - Fathelrahman Mohammed Soliman AU - Wu Yang AU - Hao Guo AU - Mahgoub Ibrahim Shinger AU - Ahmed Mahmoud Idris AU - Emtenan Suliman Hassan Y1 - 2016/09/13 PY - 2016 N1 - https://doi.org/10.11648/j.ajpst.20160201.12 DO - 10.11648/j.ajpst.20160201.12 T2 - American Journal of Polymer Science and Technology JF - American Journal of Polymer Science and Technology JO - American Journal of Polymer Science and Technology SP - 11 EP - 19 PB - Science Publishing Group SN - 2575-5986 UR - https://doi.org/10.11648/j.ajpst.20160201.12 AB - An eco-friendly high-swelling superabsorbent composite CMC-g-poly(acrylic acid - 2-acrylamido-2-methylpropane sulfonic acid)/Attapulgite based on carboxymethyl cellulose (CMC) and inorganic clay Attapulgite (ATP) was prepared via a grafting copolymerization of acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), using with N, N-methylenebisacrylamide (MBA) as a cross-linking agent, ammonium persulfate (APS) as an initiator and polyethylene glycol(PEG) as a phase transfer catalyst. The effects of polymerization conditions on the swelling ability of the superabsorbent composite were investigated. The results indicated that the prepared superabsorbent had high water absorbency. Saturated water absorbencies of the superabsorbent reached (864 g.g-1) for distilled water and (72 g.g-1) for 0.9 wt% NaCl aqueous solution respectively. The water absorbency of the composites was dependent on the pH of external solutions and used saline solutions. VL - 2 IS - 1 ER -