Our aim is to find the kind of adsorption (physisorption or chemisorption) existent, where the interaction of one metal atom (Ni, Pd, Pt) with one hydrogen molecule is achieved for modeling potential energy surface using DFT approach. This molecular modeling is developed when attacking a metal atom with a hydrogen molecule. Attack starts at 10 Å considered as infinite distance for determining the energies step by step of 1 Å approaches of hydrogen to metal. The new metal–hydrogen molecule also called complex or intermediary is located at the minimum between the attractive and repulsive part of the potential energy curve of interaction. The adsorption energy and equilibrium distance corresponds to insert metal atoms in gas molecules. This study analyzes the interaction metal-hydrogen and compares with other researches. The metal-hydrogen interaction is at least useful in high-tech electronic materials, fuel cells, hydrogen batteries, and catalysis.
Published in | American Journal of Quantum Chemistry and Molecular Spectroscopy (Volume 1, Issue 1) |
DOI | 10.11648/j.ajqcms.20170101.12 |
Page(s) | 7-20 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Density Functional Theory, Potential Energy Curve, Adsorption, Physisorption Chemisorption
[1] | H. Nakatsuji and M. Hada, Croat. Chim. Acta 57 (1984) 1371. |
[2] | K. Balasubramanian, Chem. Phys. Lett. 135 (1987) 288. |
[3] | M. R. A. Blomberg, P. E. M. Siegbahn and B. O. Roos, Mol. Phys. 47 (1982) 127. |
[4] | M. R. A. Blomberg and P. E. M. Siegbahn, J. Chem. Phys. 78, (1983) 5682. |
[5] | M. R. A. Blomberg, U. Brandemark, L. Pettersson and P. E. M. Siegbahn, Int. J. of Quantum Chem., 23, (1983) 855-863 |
[6] | S. Li, R. J. Van Zee, W. Weltner Jr., M. G. Cory and M. C. Zerner J. Chem. Phys. 106, (1997) 2055. |
[7] | M. E. Geusic, M. D. Morse, and R. E. Smalley, J. Chem. Phys. 82 (1985) 590. |
[8] | J. J. Low and W. A. Goddard III, J. Am. Chem. Soc. 106 (1984) 8321. |
[9] | X. Liu et al., J Phys Chem B Condens Matter Mater Surf Interfaces Biophys. 110 (2006) 2013. |
[10] | ASTM 2006: D3908-03 Standard Test Method for Hydrogen Chemisorption on Supported Platinum on Alumina Catalysts and Catalyst Carriers by Volumetric Vacuum Method. |
[11] | J. H. Pacheco I. P. Zaragoza, L. A. García, and A. Bravo Rev. Mex. Fís. 52 (2006) 172. |
[12] | P. Jena, S. N. Khanna, and B. K. Rao “Clusters and Cluster Reactions” in Density Functional Theory of Molecules, Clusters, and Solids. Edited by D. E. Ellis. Kluwer Academic Publishers. Dordrecht, Netherlands (1995). |
[13] | E. Poulain, J. García-Prieto, M. E. Ruiz, and O. Novaro, Int. J. Quantum Chem. 29 (1986) 1181. |
[14] | J. H. Pacheco and A. Bravo, O. Novaro. Revista Mexicana de Fisica 52 (2006) 395. |
[15] | C. Jarque and O. Novaro, M. E. Ruiz, and J. Garcia-Prieto, J. Am. Chem, Soc.1986, 108, 3507. |
[16] | G. A. Ozín and J. García-Prieto, J. Am. Chem. Soc. 1986, 108, 3099. |
[17] | H. Nakatsuji and M. Hada in Applied Quantum Chemistry edited by V. H. Smith, H. F. Schaefer, and K. Morokum. (1986). D. Reidel Publishing Company, Dordrecht, Holland. pp. 102-104. |
[18] | B. Roos, P. Taylor, and P. Siegbahn, Chern. Phys. 48, 157 (1980). |
[19] | P. Siegbahn, A. Heiberg, B. Roos, and B. Levy, Phys. Scripta, 21, 323 (1980). |
[20] | A. B. Kunz, M. P. Guse, and R. J. Blint, Chem. Phys. Lett. 37(3), 512 (1976). |
[21] | E. Poulain, F. Colmenares, S. Castillo and O. Novaro. Journal of Molecular Structure (Theochem). 210 (1990) 337-351. |
[22] | M. E. Alikhani and C. Minot. J. Phys. Chem. A 2003, 107, 5352-5355. |
[23] | K. Balasubramanian, J. Chem. Phys., 87 (1987) 2800. |
[24] | H. Nakatsuji, Y. Matsuzaki and T. Yonezawa, J. Chem. Phys., 88 (1988) 5759. |
[25] | R. M. Emrick, Journal of Physiscs F: Met Phys. 12 (1982) 1327. |
[26] | F. Ruette, G. Blyholder, and Head, J. Chem. Phys. 80, 2042 (1984). |
[27] | M. P. Guse, R. J. Blint, A. B. Kunz, Int. J. Quantum Chem. 11 (1977) 725 M. |
[28] | E. K. Parks, K. Liu, S. C. Richtsmeier, I. G. Pobo, and S. J. Riley, J. Chem. Phys. 82, (1985) 5470-5474. |
[29] | L. Andrews, Chem. Soc. Rev. 33 (2004) 123. |
[30] | L. Andrews, X. Wang, M. E. Alikhani, and L. Manceron, J. Phys. Chem. A 105 (2001) 3052. |
[31] | Ira N. Levine. (2001). Quantum Chemistry. Prentice Hall, NJ 2000. |
[32] | B. Delley, J. Chem. Phys. 1990, 92, 508; J. Chem. Phys. 1991, 94, 7245; J. Chem. Phys. 2000, 7756; J. Phys. Chem. 1996, 100, 6107. |
[33] | R. G. Parr, W. Yang. (1989). Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford. |
[34] | R. M. Dreizler, E. K. U. Gross. (1990). Density Functional Theory-an Approach to the Quantum Many- Body Problem. Springer. Berlin. |
[35] | John P. Lowe, Kirk A. Peterson. (2006). Quantum Chemistry. Elsevier Academic Press. Tercera Edicion. |
[36] | J. H. Pacheco-Sánchez, M. A. Pacheco-Blas, EMN Meeting on Computation and Theory 2015, Abstract 11-12. |
[37] | E. Poulain, S. Castillo. XI Simposio Iberoamericano de Catálisis. Guanajuato, México. Acta 182 (1988) 1297-1307. |
[38] | E. Poulain, S. Castillo, A. Cruz, and V. Bertin, Rev. Mex. Fís. 41 (1995) 50. |
[39] | T. Iwasita, J. Braz. Chem. Soc., 13 (2002) 401. |
[40] | K. Míšek, Czechoslovak Journal of Physics 29 (1979) 1243. |
[41] | J. J. Jackson, Lattice Defects in Quenched Metals, Academic, New York, (1965), p 467, 479. |
[42] | Perdew, J. P., Wang. Y. Phys. Rev. B., 45, (1992) 13244. |
[43] | Perdew, J. P., Wang. Y. Phys. Rev. B., 33, (1986) 8800. |
[44] | NIST Data Gateway. Available on internet. |
[45] | Atkins, P., Paula, J. 2010. Physical Chemistry. W. H. Freeman and Company, Novena Edición. New York. |
[46] | C. W. Oatley, Proceedings of the Physical Society 51 (1939) 318. |
[47] | R. J. Galagali, Brit. J. Appl. Phys. 15 (1964) 208. |
APA Style
Juan Manuel Larrea Munguía, Juan Horacio Pacheco Sánchez, Federico del Razo López. (2017). Adsorption on (Ni-H2, Pd-H2, Pt-H2) Metal-Hydrogen Interaction: DFT Approach. American Journal of Quantum Chemistry and Molecular Spectroscopy, 1(1), 7-20. https://doi.org/10.11648/j.ajqcms.20170101.12
ACS Style
Juan Manuel Larrea Munguía; Juan Horacio Pacheco Sánchez; Federico del Razo López. Adsorption on (Ni-H2, Pd-H2, Pt-H2) Metal-Hydrogen Interaction: DFT Approach. Am. J. Quantum Chem. Mol. Spectrosc. 2017, 1(1), 7-20. doi: 10.11648/j.ajqcms.20170101.12
@article{10.11648/j.ajqcms.20170101.12, author = {Juan Manuel Larrea Munguía and Juan Horacio Pacheco Sánchez and Federico del Razo López}, title = {Adsorption on (Ni-H2, Pd-H2, Pt-H2) Metal-Hydrogen Interaction: DFT Approach}, journal = {American Journal of Quantum Chemistry and Molecular Spectroscopy}, volume = {1}, number = {1}, pages = {7-20}, doi = {10.11648/j.ajqcms.20170101.12}, url = {https://doi.org/10.11648/j.ajqcms.20170101.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajqcms.20170101.12}, abstract = {Our aim is to find the kind of adsorption (physisorption or chemisorption) existent, where the interaction of one metal atom (Ni, Pd, Pt) with one hydrogen molecule is achieved for modeling potential energy surface using DFT approach. This molecular modeling is developed when attacking a metal atom with a hydrogen molecule. Attack starts at 10 Å considered as infinite distance for determining the energies step by step of 1 Å approaches of hydrogen to metal. The new metal–hydrogen molecule also called complex or intermediary is located at the minimum between the attractive and repulsive part of the potential energy curve of interaction. The adsorption energy and equilibrium distance corresponds to insert metal atoms in gas molecules. This study analyzes the interaction metal-hydrogen and compares with other researches. The metal-hydrogen interaction is at least useful in high-tech electronic materials, fuel cells, hydrogen batteries, and catalysis.}, year = {2017} }
TY - JOUR T1 - Adsorption on (Ni-H2, Pd-H2, Pt-H2) Metal-Hydrogen Interaction: DFT Approach AU - Juan Manuel Larrea Munguía AU - Juan Horacio Pacheco Sánchez AU - Federico del Razo López Y1 - 2017/01/20 PY - 2017 N1 - https://doi.org/10.11648/j.ajqcms.20170101.12 DO - 10.11648/j.ajqcms.20170101.12 T2 - American Journal of Quantum Chemistry and Molecular Spectroscopy JF - American Journal of Quantum Chemistry and Molecular Spectroscopy JO - American Journal of Quantum Chemistry and Molecular Spectroscopy SP - 7 EP - 20 PB - Science Publishing Group SN - 2994-7308 UR - https://doi.org/10.11648/j.ajqcms.20170101.12 AB - Our aim is to find the kind of adsorption (physisorption or chemisorption) existent, where the interaction of one metal atom (Ni, Pd, Pt) with one hydrogen molecule is achieved for modeling potential energy surface using DFT approach. This molecular modeling is developed when attacking a metal atom with a hydrogen molecule. Attack starts at 10 Å considered as infinite distance for determining the energies step by step of 1 Å approaches of hydrogen to metal. The new metal–hydrogen molecule also called complex or intermediary is located at the minimum between the attractive and repulsive part of the potential energy curve of interaction. The adsorption energy and equilibrium distance corresponds to insert metal atoms in gas molecules. This study analyzes the interaction metal-hydrogen and compares with other researches. The metal-hydrogen interaction is at least useful in high-tech electronic materials, fuel cells, hydrogen batteries, and catalysis. VL - 1 IS - 1 ER -