The work characterizes the electric dipole moment and the infrared spectrum of the molecule C13H20BeLi2SeSi. Calculations obtained in the ab initio RHF (Restrict Hartree-Fock) method, on the set of basis used indicate that the simulated molecule C13H20BeLi2SeSi features the structure polar-apolar-polar predominant. The set of basis used that have are CC-pVTZ and 6-311G** (3df, 3pd). In the CC-pVTZ base set, the charge density in relation to 6-311G** (3df, 3pd) is 50% lower. The length of the molecule C13H20BeLi2SeSi is of 15.799Å. The magnitude of the electric dipole moment || total obtained was p = 4.9771 Debye and p = 4.7936 Debye, perpendicular to the main axis of the molecule, for sets basis CC-pVTZ and 6-311**(3df, 3pd), respectively. The infrared spectra for absorbance and transmittance and their wavenumber (cm-1) were obtained in the set of bases used. The infrared spectrum for Standard CC-pVTZ shows peaks in transmittance with Intensity (I), at wavenumber 1,125.44 cm-1, 1,940.70 cm-1, 2,094.82 cm-1, 2,178.43 cm-1, 2,613.99 cm-1 and transmittance 433.399 km/mol, 399.425 km/mol, 361.825 km/mol, 378.993 km/mol, 433.774 km/mol, respectively. While the infrared spectrum for Standard 6-311G**(3df, 3pd), shows peaks in transmittance, at wavelengths 1,114.83 cm-1, 1,936.81 cm-1, 2,081.49 cm-1, 2,163.23 cm-1, 2,595.24 cm-1 and transmittance 434.556 km/mol, 394.430 km/mol, 345.287 km/mol, 375.381 km/mol, 409.232 km/mol, respectively. It presents “fingerprint” between the intervals (680 cm-1 and 1,500 cm-1) and (3,250 cm-1 and 3,500 cm-1). The dipole moments CC-pTZV are 3.69% bigger than 6-311G** (3df, 3pd). As the bio-inorganic molecule C13H20BeLi2SeSi is the basis for a new creation of a bio-membrane, later calculations that challenge the current concepts of biomembrane should advance to such a purpose.
Published in | American Journal of Quantum Chemistry and Molecular Spectroscopy (Volume 2, Issue 1) |
DOI | 10.11648/j.ajqcms.20180201.12 |
Page(s) | 9-17 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
6-311G** (3df, 3pd), Biomembrane, CC-pTZV, Dipole Moment, Infrared Spectra, Restrict Hartree-Fock
[1] | R. Gobato, A. Heidari, A. Mitra, “The Creation of C13H20BeLi2SeSi. The Proposal of a Bio–Inorganic Molecule, Using Ab Initio Methods for The Genesis of a Nano Membrane”, Arc Org Inorg Chem Sci., 3 (4). AOICS.MS.ID.000167, 2018. |
[2] | I. N. Levine. “Quantum Chemistry”. Pearson Education (Singapore) Pte. Ltd., Indian Branch, 482 F. I. E. Patparganj, Delhi 110 092, India, 5th ed. edition, 2003. |
[3] | A. Szabo, N. S. Ostlund, “Modern Quantum Chemistry.” Dover Publications, New York, 1989. |
[4] | K. Ohno, K. Esfarjani, Y. Kawazoe, “Computational Material Science”, Springer-Verlag, Berlin, 1999. |
[5] | K. Wolfram, M. C. Hothausen, “Introduction to DFT for Chemists”, John Wiley & Sons, Inc. New York, 2nd ed. edition, 2001. |
[6] | P. Hohenberg ,W. Kohn, “Inhomogeneous electron gas”, Phys. Rev., (136):B864–B871, 1964. |
[7] | W. Kohn, L. J. Sham, “Self-consistent equations including exchange and correlation effects”, Phys. Rev., (140):A1133, 1965. |
[8] | J. M. Thijssen, “Computational Physics”, Cambridge University Press, Cambridge, 2001. |
[9] | J. P. Perdew M. Ernzerhof, K. Burke, “Rationale for mixing exact exchange with density functional approximations”, J. Chem. Phys., 105(22):9982–9985, 1996. |
[10] | T. H. Dunning Jr., “Gaussian basis sets for use in correlated molecular calculations, The atoms boron through neon and hydrogen”, J. Chem. Phys., (90):1007–23, 1989. |
[11] | R. A. Kendall, T. H. Dunning Jr., R. J. Harrison, “Electron affinities of the first-row atoms revisited. Systematic basis sets and wave function”, J. Chem. Phys., (96):6796–806, 1992. |
[12] | D. E. Woon, T. H. Dunning Jr. “Gaussian-basis sets for use in correlated molecular calculations. The atoms aluminum through argon”, J. Chem. Phys., (98):1358–71, 1993. |
[13] | K. A. Peterson, D. E. Woon, T. H. Dunning Jr., “Benchmark calculations with correlated molecular wave functions. The classical barrier height of the H+H2 –¿ H2+H reaction”. J. Chem. Phys., (100):7410–15, 1994. |
[14] | A. K. Wilson, T. van Mourik, T. H. Dunning Jr., “Gaussian basis sets for use in Correlated Molecular Calculations. Sextuple zeta correlation consistent basis sets for boron through neon”, J. Mol. Struct. (Theochem), (388):339–49, 1996. |
[15] | M. S. Gordon et al., “General atomic and molecular electronic structure system (GAMESS)”. J. Comput. Chem., 14:1347–1363, 1993. |
[16] | E. Polak, “Computational Methods in Optimization”, v. 77. Elsevier, 111 Fifth Avenue, New York, New York 10003, 1971. |
[17] | T. H. Dunning Jr., P. J. Hay, “Modern Theoretical Chemistry”, vol. 3. Plenum, New York, 1977. |
[18] | E. Eliav, “Elementary introduction to Molecular Mechanics and Dynamics”, Jun 2013. |
[19] | W. J. Hehre, “A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction”, Inc., Irvine, CA, 2003. |
[20] | M. S. Gordon, M. W. Schmidt, “Advances in electronic structure theory: GAMESS a decade later. Theory and Applications of Computational Chemistry: the first forty years”, Elsevier. C. E. Dykstra, G. Frenking, K. S. Kim and G. E. Scuseria (editors), pages 1167–1189, 2005. Amsterdam. |
[21] | R. G. Parr, W. Yang, “Density Functional Theory”, 1989. |
[22] | A. Schaefer, H. Horn, R. Ahlrichs, “Fully optimized contracted Gaussian-basis sets for atoms Li to Kr”, J. Chem. Phys., 97 (1992) 2571-77. DOI: 10.1063/1.463096 |
[23] | A. Schaefer, C. Huber, R. Ahlrichs, “Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr”, J. Chem. Phys., 100 (1994) 5829-35. DOI:10.1063/1.467146 |
[24] | R. Gobato, A. Gobato, D. F. G. Fedrigo, “Inorganic arrangement crystal beryllium, lithium, selenium and silicon”. In XIX Semana da Física. Simpósio Comemorativo dos 40 anos do Curso de Física da Universidade Estadual de Londrina, Brazil, 2014. Universidade Estadual de Londrina (UEL). |
[25] | R. Gobato, “Benzocaína, um estudo computacional”, Master’s thesis, Universidade Estadual de Londrina (UEL), 2008. |
[26] | R. Gobato, “Study of the molecular geometry of Caramboxin toxin found in star flower (Averrhoa carambola L.)”. Parana J. Sci. Edu, 3(1):1–9, January 2017. |
[27] | R. Gobato, A. Gobato, D. F. G. Fedrigo, “Molecular electrostatic potential of the main monoterpenoids compounds found in oil Lemon Tahiti - (Citrus Latifolia Var Tahiti)”. Parana J. Sci. Edu., 1(1):1–10, November 2015. |
[28] | R. Gobato, D. F. G. Fedrigo, A. Gobato, “Allocryptopine, Berberine, Chelerythrine, Copsitine, Dihydrosanguinarine, Protopine and Sanguinarine. Molecular geometry of the main alkaloids found in the seeds of Argemone Mexicana Linn”. Parana J. Sci. Edu., 1(2):7–16, December 2015. |
[29] | R. Gobato, A. Heidari, “Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods”, International Journal of Atmospheric and Oceanic Sciences. Vol. 2, No. 1, 2018, pp. 1-9. doi: 10.11648/j.ijaos.20180201.11. |
[30] | R. Gobato, D. F. G. Fedrigo, A. Gobato, “Molecular geometry of alkaloids present in seeds of mexican prickly poppy”. Cornell University Library. Quantitative Biology, Jul 15, 2015. arXiv:1507. 05042. |
[31] | R. Gobato, A. Gobato, D. F. G. Fedrigo, “Study of the molecular electrostatic potential of D-Pinitol an active hypoglycemic principle found in Spring flower Three Marys (Bougainvillea species) in the Mm+ method”. Parana J. Sci. Educ., 2(4):1–9, May 2016. |
[32] | R. Gobato, D. F. G. Fedrigo, A. Gobato, “Avro: key component of Lockheed X-35”, Parana J. Sci. Educ., 1(2):1–6, December 2015. |
[33] | R. Gobato, D. F. G. Fedrigo, A. Gobato, “LOT-G3: Plasma Lamp, Ozonator and CW Transmitter”, Ciencia e Natura, 38(1), 2016. |
[34] | R. Gobato, “Matter and energy in a non-relativistic approach amongst the mustard seed and the faith. A metaphysical conclusion”. Parana J. Sci. Educ., 2(3):1–14, March 2016. |
[35] | R. Gobato, A. Gobato, D. F. G. Fedrigo, “Harnessing the energy of ocean surface waves by Pelamis System”, Parana J. Sci. Educ., 2(2):1–15, February 2016. |
[36] | R. Gobato, A. Gobato, D. F. G. Fedrigo, “Mathematics for input space probes in the atmosphere of Gliese 581d”, Parana J. Sci. Educ., 2(5):6–13, July 2016. |
[37] | R. Gobato, A. Gobato, D. F. G. Fedrigo, “Study of tornadoes that have reached the state of Parana”. Parana J. Sci. Educ., 2(1):1–27, 2016. |
[38] | R. Gobato, M. Simões F. “Alternative Method of RGB Channel Spectroscopy Using a CCD Reader”, Ciencia e Natura, 39(2), 2017. |
[39] | R. Gobato, A. Heidari, “Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi”, Science Journal of Analytical Chemistry, 5(5):76–85, September 2017. |
[40] | M. R. R. Gobato, R. Gobato, A. Heidari, “Planting of Jaboticaba Trees for Landscape Repair of Degraded Area”, Landscape Architecture and Regional Planning, 3(1):1–9, March 18, 2018. |
[41] | R. Gobato, “The Liotropic Indicatrix”, 2012, 114 p. Thesis (Doctorate in Pysics). Universidade Estadual de Londrina, Londrina, 2012. |
[42] | R. Gobato, A. Heidari, “Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi”, Science Journal of Analytical Chemistry, Vol. 5, No. 6, Pages 76–85, 2017. |
[43] | M. R. R Gobato, R. Gobato, A. Heidari, “Planting of Jaboticaba Trees for Landscape Repair of Degraded Area”, Landscape Architecture and Regional Planning, Vol. 3, No. 1, 2018, Pages 1–9, 2018. |
[44] | R. Gobato, A. Heidari, “Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods”, International Journal of Atmospheric and Oceanic Sciences, Vol. 2, No. 1, pp. 1–9, 2018. |
[45] | R. Gobato, A. Heidari, “Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations”, Malaysian Journal of Chemistry, Vol. 20(1), 1–23, 2018. |
[46] | A. Heidari, R. Gobato. “A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells–Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹–Tetrahydrocannabinol (THC) [(–)–trans–Δ⁹–Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti–Cancer Nano Drugs by Coassembly of Dual Anti–Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance”, Parana Journal of Science and Education, v. 4, n. 6, pp. 1–17, 2018. |
[47] | A. Heidari, R. Gobato, “Ultraviolet Photoelectron Spectroscopy (UPS) and Ultraviolet–Visible (UV–Vis) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Parana Journal of Science and Education, v. 4, n. 6, pp. 18–33, 2018. |
[48] | R. Gobato, A. Heidari, “Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H”, J Nanomed Res., 7 (4): 241‒252, 2018. |
[49] | R. Gobato, A. Gobato, D. F.rancine G. Fedrigo. “Inorganic arrangement crystal beryllium, lithium, selenium and silicon”. In XIX Semana da Física. Simpósio Comemorativo dos 40 anos do Curso de Física da Universidade Estadual de Londrina, Brazil, 2014. Universidade Estadual de Londrina (UEL). 2014. |
[50] | R, Gobato, “Study of the molecular geometry of Caramboxin toxin found in star flower (Averrhoa carambola L.)”, Parana J. Sci. Educ., 3(1):1–9, January 2017. |
[51] | R. Gobato, A. Gobato, D. F. G. Fedrigo, “Molecular electrostatic potential of the main monoterpenoids compounds found in oil Lemon Tahiti – (Citrus Latifolia Var Tahiti)”, Parana J. Sci. Educ., 1(1):1–10, November 2015. |
[52] | R. Gobato, D. F. G. Fedrigo, A. Gobato, “Allocryptopine, Berberine, Chelerythrine, Copsitine, Dihydrosanguinarine, Protopine and Sanguinarine. Molecular geometry of the main alkaloids found in the seeds of Argemone Mexicana Linn”, Parana J. Sci. Educ., 1(2):7–16, December 2015. |
[53] | R. Gobato, A. Heidari, “Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods”, International Journal of Atmospheric and Oceanic Sciences. Vol. 2, No. 1, 2018, pp. 1–9. doi: 10.11648/j.ijaos.20180201.11. |
[54] | R. Gobato, D. F. G. Fedrigo, A. Gobato, “Molecular geometry of alkaloids present in seeds of mexican prickly poppy”, Cornell University Library. Quantitative Biology, July 15, 2015. arXiv:1507. 05042. |
[55] | R. Gobato, A. Gobato, D. F. G. Fedrigo, “Study of the molecular electrostatic potential of D–Pinitol an active hypoglycemic principle found in Spring flower Three Marys (Bougainvillea species) in the Mm+ method”. Parana J. Sci. Educ., 2(4):1–9, May 2016. |
[56] | R. Gobato, D. F. G. Fedrigo, A. Gobato, “Avro: key component of Lockheed X–35”. Parana J. Sci. Educ., 1(2):1–6, December 2015. |
[57] | S. K. Agarwal, S. Roy, P. Pramanick, P. Mitra, R. Gobato, A. Mitra, “Marsilea quadrifolia: A floral species with unique medicinal properties”, Parana J. Sci. Educ., v.4, n.5, (15–20), July 1, 2018. |
[58] | A. Mitra, S. Zaman, R. Gobato. “Indian Sundarban Mangroves: A potential Carbon Scrubbing System”. Parana J. Sci. Educ., v.4, n.4, (7–29), June 17, 2018. |
[59] | O. Yarman, R. Gobato, T. Yarman, M. Arik. “A new Physical constant from the ratio of the reciprocal of the “Rydberg constant” to the Planck length”. Parana J. Sci. Educ., v.4, n.3, (42–51), April 27, 2018. |
[60] | R. Gobato, M. Simões F., “Alternative Method of Spectroscopy of Alkali Metal RGB”, Modern Chemistry. Vol. 5, No. 4, 2017, pp. 70–74. doi: 10.11648/j.mc.20170504.13. |
[61] | D. F. G. Fedrigo, R. Gobato, A. Gobato, “Avrocar: a real flying saucer”, Cornell University Library. 24 Jul 2015. arXiv:1507.06916v1 [physics.pop–ph]. |
[62] | M, Simões F., A. J. Palangana, R. Gobato, O. R. Santos, "Micellar shape anisotropy and optical indicatrix in reentrant isotropic—nematic phase transitions", The Journal of Chemical Physics, 137, 204905 (2012); https://doi.org/10.1063/1.4767530. |
[63] | J. J. W. McDouall, “Computational Quantum Chemistry. Molecular Structure and Properties in Silico”. The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK, 2013. |
[64] | F. Weigend, R. Ahlrichs, “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy”, Phys. Chem. Chem. Phys., (7):3297–305, 2005. |
[65] | Creative Commons, (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/. “List of Intel Core i3 microprocessors”, https://en.wikipedia.org/wiki/List_of_Intel_Core_i3_microprocessors, Access in: August 30, 2018. |
[66] | __________.___ “Ivy Bridge”, https://pt.wikipedia.org/wiki/Ivy_Bridge, Access in: August 31, 2018. |
[67] | R. Dennington, T. Keith, J. Millam. Gaussview, Version 5, 2009. |
[68] | The Cambridge Crystallographic Data Centre (CCDC), “Mercury - crystal structure visualisation, exploration and analysis made easy”, May 2012. Mercury 3.1 Development (Build RC5). The Cambridge Crystallographic Data Centre. |
[69] | Avogadro: an open-source molecular builder and visualization tool. Version 1.1.1. http://avogadro.cc/. |
[70] | D. Marcus, D. E. Hanwell, D. C. Curtis, T. V Lonie, E. Zurek, G. R. Hutchison, “Avogadro: An advanced semantic chemical editor, visualization, and analysis platform” Journal of Cheminformatics 2012, 4:17. |
[71] | Creative Commons, (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/. “Ubuntu (operating system)”, https://en.wikipedia.org/wiki/Ubuntu_(operating_system), Access in: August 31, 2018. |
[72] | OriginLabÒ2018 Evaluation Licence, Graphing & Analysis, ©OriginLab Corporation, https://www.originlab.com/index.aspx?go=Products/Origin/2018b&pid=3289. |
APA Style
Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari, Abhijit Mitra. (2018). Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab initio, Hartree-Fock Method in the Base Set CC-pVTZ and 6-311G** (3df, 3pd). American Journal of Quantum Chemistry and Molecular Spectroscopy, 2(1), 9-17. https://doi.org/10.11648/j.ajqcms.20180201.12
ACS Style
Ricardo Gobato; Marcia Regina Risso Gobato; Alireza Heidari; Abhijit Mitra. Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab initio, Hartree-Fock Method in the Base Set CC-pVTZ and 6-311G** (3df, 3pd). Am. J. Quantum Chem. Mol. Spectrosc. 2018, 2(1), 9-17. doi: 10.11648/j.ajqcms.20180201.12
AMA Style
Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari, Abhijit Mitra. Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab initio, Hartree-Fock Method in the Base Set CC-pVTZ and 6-311G** (3df, 3pd). Am J Quantum Chem Mol Spectrosc. 2018;2(1):9-17. doi: 10.11648/j.ajqcms.20180201.12
@article{10.11648/j.ajqcms.20180201.12, author = {Ricardo Gobato and Marcia Regina Risso Gobato and Alireza Heidari and Abhijit Mitra}, title = {Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab initio, Hartree-Fock Method in the Base Set CC-pVTZ and 6-311G** (3df, 3pd)}, journal = {American Journal of Quantum Chemistry and Molecular Spectroscopy}, volume = {2}, number = {1}, pages = {9-17}, doi = {10.11648/j.ajqcms.20180201.12}, url = {https://doi.org/10.11648/j.ajqcms.20180201.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajqcms.20180201.12}, abstract = {The work characterizes the electric dipole moment and the infrared spectrum of the molecule C13H20BeLi2SeSi. Calculations obtained in the ab initio RHF (Restrict Hartree-Fock) method, on the set of basis used indicate that the simulated molecule C13H20BeLi2SeSi features the structure polar-apolar-polar predominant. The set of basis used that have are CC-pVTZ and 6-311G** (3df, 3pd). In the CC-pVTZ base set, the charge density in relation to 6-311G** (3df, 3pd) is 50% lower. The length of the molecule C13H20BeLi2SeSi is of 15.799Å. The magnitude of the electric dipole moment || total obtained was p = 4.9771 Debye and p = 4.7936 Debye, perpendicular to the main axis of the molecule, for sets basis CC-pVTZ and 6-311**(3df, 3pd), respectively. The infrared spectra for absorbance and transmittance and their wavenumber (cm-1) were obtained in the set of bases used. The infrared spectrum for Standard CC-pVTZ shows peaks in transmittance with Intensity (I), at wavenumber 1,125.44 cm-1, 1,940.70 cm-1, 2,094.82 cm-1, 2,178.43 cm-1, 2,613.99 cm-1 and transmittance 433.399 km/mol, 399.425 km/mol, 361.825 km/mol, 378.993 km/mol, 433.774 km/mol, respectively. While the infrared spectrum for Standard 6-311G**(3df, 3pd), shows peaks in transmittance, at wavelengths 1,114.83 cm-1, 1,936.81 cm-1, 2,081.49 cm-1, 2,163.23 cm-1, 2,595.24 cm-1 and transmittance 434.556 km/mol, 394.430 km/mol, 345.287 km/mol, 375.381 km/mol, 409.232 km/mol, respectively. It presents “fingerprint” between the intervals (680 cm-1 and 1,500 cm-1) and (3,250 cm-1 and 3,500 cm-1). The dipole moments CC-pTZV are 3.69% bigger than 6-311G** (3df, 3pd). As the bio-inorganic molecule C13H20BeLi2SeSi is the basis for a new creation of a bio-membrane, later calculations that challenge the current concepts of biomembrane should advance to such a purpose.}, year = {2018} }
TY - JOUR T1 - Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab initio, Hartree-Fock Method in the Base Set CC-pVTZ and 6-311G** (3df, 3pd) AU - Ricardo Gobato AU - Marcia Regina Risso Gobato AU - Alireza Heidari AU - Abhijit Mitra Y1 - 2018/10/04 PY - 2018 N1 - https://doi.org/10.11648/j.ajqcms.20180201.12 DO - 10.11648/j.ajqcms.20180201.12 T2 - American Journal of Quantum Chemistry and Molecular Spectroscopy JF - American Journal of Quantum Chemistry and Molecular Spectroscopy JO - American Journal of Quantum Chemistry and Molecular Spectroscopy SP - 9 EP - 17 PB - Science Publishing Group SN - 2994-7308 UR - https://doi.org/10.11648/j.ajqcms.20180201.12 AB - The work characterizes the electric dipole moment and the infrared spectrum of the molecule C13H20BeLi2SeSi. Calculations obtained in the ab initio RHF (Restrict Hartree-Fock) method, on the set of basis used indicate that the simulated molecule C13H20BeLi2SeSi features the structure polar-apolar-polar predominant. The set of basis used that have are CC-pVTZ and 6-311G** (3df, 3pd). In the CC-pVTZ base set, the charge density in relation to 6-311G** (3df, 3pd) is 50% lower. The length of the molecule C13H20BeLi2SeSi is of 15.799Å. The magnitude of the electric dipole moment || total obtained was p = 4.9771 Debye and p = 4.7936 Debye, perpendicular to the main axis of the molecule, for sets basis CC-pVTZ and 6-311**(3df, 3pd), respectively. The infrared spectra for absorbance and transmittance and their wavenumber (cm-1) were obtained in the set of bases used. The infrared spectrum for Standard CC-pVTZ shows peaks in transmittance with Intensity (I), at wavenumber 1,125.44 cm-1, 1,940.70 cm-1, 2,094.82 cm-1, 2,178.43 cm-1, 2,613.99 cm-1 and transmittance 433.399 km/mol, 399.425 km/mol, 361.825 km/mol, 378.993 km/mol, 433.774 km/mol, respectively. While the infrared spectrum for Standard 6-311G**(3df, 3pd), shows peaks in transmittance, at wavelengths 1,114.83 cm-1, 1,936.81 cm-1, 2,081.49 cm-1, 2,163.23 cm-1, 2,595.24 cm-1 and transmittance 434.556 km/mol, 394.430 km/mol, 345.287 km/mol, 375.381 km/mol, 409.232 km/mol, respectively. It presents “fingerprint” between the intervals (680 cm-1 and 1,500 cm-1) and (3,250 cm-1 and 3,500 cm-1). The dipole moments CC-pTZV are 3.69% bigger than 6-311G** (3df, 3pd). As the bio-inorganic molecule C13H20BeLi2SeSi is the basis for a new creation of a bio-membrane, later calculations that challenge the current concepts of biomembrane should advance to such a purpose. VL - 2 IS - 1 ER -