Zinc chloride is a source of zinc used in various pharmaceutical/nutraceutical formulations. The objective of the current study was to investigate the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Treatment) on physical, structural, thermal, and behavioral properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, and DSC analysis. Zinc chloride was divided into two parts – one part was control, while another part was treated with The Trivedi Effect® remotely by twenty renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. A significant alteration of the crystallite size and relative intensities of the PXRD peaks was observed in The Trivedi Effect® treated sample compared with the control sample. The average crystallite size of the treated sample was significantly increased by 23.18% compared with the control sample. The particle size values at d10, d50, and d90 values were significantly decreased by 3.70%, 4.13%, and 6.13%, respectively in the treated sample compared with the control sample. Therefore, the surface area of the treated sample was increased by 4.21% compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control sample was found at 512 cm-1, whereas it was significantly shifted upward to 520 cm-1 in the treated sample. The UV-vis analysis exhibited that wavelength of the maximum absorbance (λmax) of the control and treated samples were at 197.6 nm and 197.1 nm, respectively. The DSC analysis exhibited that the melting temperature was decreased by 0.22%, while decomposition temperature was increased by 2.56% in the treated sample compared to the control sample. The latent heat of fusion of the treated sample (320.44 J/g) was significantly decreased by 16.70% compared with the control sample (284.67 J/g). Similarly, the enthalpy of decomposition of the treated sample (952.53 J/g) was significantly increased by 122.61% compared with the control sample (427.90 J/g). Thus, the results indicated that the thermal stability of the treated zinc chloride was improved compared with the control sample. The current study anticipated that The Trivedi Effect® - Energy of Consciousness Healing Treatment might lead to produce a thermally stable new polymorphic form of zinc chloride, which would be more soluble and bioavailable compared with the untreated compound. Hence, the treated zinc chloride would be very useful to design better nutraceutical/pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc.
Published in | American Journal of Bioscience and Bioengineering (Volume 5, Issue 2) |
DOI | 10.11648/j.bio.20170502.12 |
Page(s) | 65-74 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Zinc Chloride, Consciousness Energy Healing Treatment, Biofield Energy Healers, The Trivedi Effect®, PXRD, Particle Size,Surface Area, DSC
[1] | Ronconi L, Sadler PJ. (2008) Applications of heteronuclear NMR spectroscopy in biological and medicinal inorganic chemistry. Coordn Chem Rev 252: 2239-2277. |
[2] | Berg JM, Shi Y. (1996) The galvanization of biology: A. growing appreciation for the roles of zinc. Science 271: 1081-1085. |
[3] | Higdon JV, Ho E. (2005) In: M. Gielen, E. R. T. Tiekink (Eds.), Metallotherapeutic drugs and metal-based diagnostic agents: The use of metals in medicine, Wiley-VCH, Weinheim, p. 237. |
[4] | Brewer GJ. (2001) Zinc acetate for the treatment of Wilson's disease. Expert Opin Pharmacother 2: 1473-1477. |
[5] | Prasad AS. (1979) Clinical, biochemical, and pharmacological role of zinc. Ann Rev Pharmacol Toxicol 19: 393-426. |
[6] | Supuran CT. (2008) Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat Rev Drug Dis 7: 168-181. |
[7] | Elmes ME. (1975) Letter: Zinc in human medicine. Lancet 2: 549. |
[8] | Mazumder PM, Pattnayak S, Parvani H, Sasmal D, Rathinavelusamy P. (2012) Evaluation of immunomodulatory activity of Glycyrhiza glabra L. roots in combination with zing. Asian Pac J Trop Biomed 2: S15-S20. |
[9] | Brynestad J, Yakel HL. (1978) Preparation and structure of anhydrous zinc chloride. Inorg Chem 17: 1376-1377. |
[10] | Kasture AV, Wadodkar SG. (2008) A. text book of pharmaceutical chemistry-1, Nirali Prakashan, 25th Ed., Pune, India. |
[11] | Mahadik KR, Kuchekar BS. (2008) Concise inorganic pharmaceutical chemistry, Nirali Prakashan, 25th Ed., Pune, India. |
[12] | McDaniel S, Goldman GD. (2002) Consequences of using escharotic agents as primary treatment for nonmelanoma skin cancer. Arch Dermatol 138: 1593-1596. |
[13] | Hu J, Yang Z, Wang J, Yu J, Guo J, Liu S, Qian C, Song L, Wu Y, Cheng J. (2016) Zinc chloride transiently maintains mouse embryonic stem cell pluripotency by activating Stat3 signaling. PLoS One 11: e0148994. |
[14] | Fukuyama Y, Kawarai S, Tezuka T, Kawabata A, Maruo T. (2016) The palliative efficacy of modified Mohs paste for controlling canine and feline malignant skin wounds. Vet Q. 1: 1-7. |
[15] | Yakimovskii AF, Kryzhanovskaya SY. (2015) Zinc chloride and zinc acetate injected into the neostriatum produce opposite effect on locomotor behavior of rats. Bull Exp Biol Med 160: 281-282. |
[16] | Stenger VJ. (1999) Bioenergetic fields. Sci Rev Alternative Med 3: 16-21. |
[17] | Rogers, M. (1989) "Nursing: A. Science of Unitary Human Beings." In J. P. Riehl-Sisca (ed.) Conceptual Models for Nursing Practice. 3rd Edn. Norwark: Appleton & Lange. |
[18] | Rosa L, Rosa E, Sarner L, Barrett S. (1998) A. close look at therapeutic touch. Journal of the American Medical Association 279: 1005-1010. |
[19] | Warber SL, Cornelio D, Straughn, J, Kile G (2004) Biofield energy healing from the inside. J Altern Complement Med 10: 1107-1113. |
[20] | Koithan M. (2009) Introducing complementary and alternative therapies. J. Nurse Pract 5: 18-20. |
[21] | Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S. (2015) The potential impact of biofield treatment on human brain tumor cells: A. time-lapse video microscopy. J. Integr Oncol 4: 141. |
[22] | Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S. (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J. Microb Biochem Technol 7: 203-206. |
[23] | Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S. (2015) An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: A. multihost pathogen. J Trop Dis 3: 167. |
[24] | Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S. (2015) An evaluation of biofield treatment on susceptibility pattern of multidrug resistant Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin Microbiol 4: 211. |
[25] | Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S. (2015) Physical, thermal, and spectroscopic characterization of biofield energy treated potato micropropagation medium. American Journal of Bioscience and Bioengineering 3: 106-113. |
[26] | Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S. (2015) Antibiogram, biochemical reactions and genotyping characterization of biofield treated Staphylococcus aureus. American Journal of BioScience 3: 212-220. |
[27] | Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S. (2015) Biochemical differentiation and molecular characterization of biofield treated Vibrio parahaemolyticus. American Journal of Clinical and Experimental Medicine 3: 260-267. |
[28] | Trivedi MK, Branton A, Trivedi D, Gangwar M, Jana S. (2015) Antimicrobial susceptibility, biochemical characterization and molecular typing of biofield treated Klebsiella pneumoniae. J. Health Med Inform 6: 206. |
[29] | Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S. (2015) Characterization of atomic and physical properties of biofield energy treated manganese sulfide powder. American Journal of Physics and Applications 3: 215-220. |
[30] | Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S. (2015) Analysis of physical, thermal, and structural properties of biofield energy treated molybdenum dioxide. International Journal of Materials Science and Applications 4: 354-359. |
[31] | Trivedi MK, Branton A, Trivedi D, Shettigar H, Bairwa K, Jana S. (2015) Fourier transform infrared and ultraviolet-visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin. Nat Prod Chem Res 3: 186. |
[32] | Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S. (2015) Spectroscopic characterization of disulfiram and nicotinic acid after biofield treatment. J. Anal Bioanal Tech 6: 265. |
[33] | Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S. (2015) Biofield treatment: A. potential strategy for modification of physical and thermal properties of gluten hydrolysate and ipomoea macroelements. J. Nutr Food Sci 5: 414. |
[34] | Trivedi MK, Nayak G, Patil S, Tallapragada RM, Jana S, Mishra RK. (2015) Bio-field Treatment: An effective strategy to improve the quality of beef extract and meat infusion powder. J. Nutr Food Sci 5: 389. |
[35] | Trivedi MK, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S. (2015) Evaluation of biofield treatment on atomic and thermal properties of ethanol. Organic Chem Curr Res 4: 145. |
[36] | Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S. (2015) Physical, thermal and spectroscopic studies on biofield treated p-dichlorobenzene. Biochem Anal Biochem 4: 204. |
[37] | Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S. (2015) Physicochemical and spectroscopic characterization of biofield energy treated p-anisidine. Pharm Anal Chem Open Access 6: 102. |
[38] | Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S. (2015) Agronomic characteristics, growth analysis, and yield response of biofield treated mustard, cowpea, horse gram, and groundnuts. International Journal of Genetics and Genomics 3: 74-80. |
[39] | Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S. (2015) Analysis of genetic diversity using simple sequence repeat (SSR) markers and growth regulator response in biofield treated cotton (Gossypium hirsutum L.). American Journal of Agriculture and Forestry 3: 216-221. |
[40] | Chereson R. (2009) Bioavailability, bioequivalence, and drug selection. In: Makoid CM, Vuchetich PJ, Banakar UV. (Eds) Basic pharmacokinetics (1st Edn) Pharmaceutical Press, London. |
[41] | Blagden N, de Matas M, Gavan PT, York P. (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59: 617-630. |
[42] | Trivedi MK, Mohan TRR. (2016) Biofield energy signals, energy transmission and neutrinos. American Journal of Modern Physics 5: 172-176. |
[43] | Alexander L, Klug HP. (1950) Determination of crystallite size with the X-Ray Spectrometer. J. App Phys 21: 137. |
[44] | Langford JI, Wilson AJC. (1978) Scherrer after sixty years: A. survey and some new results in the determination of crystallite size. J. Appl Cryst 11: 102-113. |
[45] | Raza K, Kumar P, Ratan S, Malik R, Arora S. (2014) Polymorphism: The phenomenon affecting the performance of drugs. SOJ Pharm Pharm Sci 1: 10. |
[46] | Brittain HG. (2009) Polymorphism in pharmaceutical solids in Drugs and Pharmaceutical Sciences, volume 192, 2nd Edn, Informa Healthcare USA, Inc., New York. |
[47] | Thiruvengadam E, Vellaisamy G. (2014) Polymorphism in pharmaceutical ingredients a review. World Journal of Pharmacy and Pharmaceutical Sciences 3: 621-633. |
[48] | http://www.dissolution.com/ddg/showthread.php?2366-Surface-Area-vs-Particle-Size. |
[49] | Mosharrof M, Nystrӧm C. (1995) The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J. Pharm 122: 35-47. |
[50] | Murray HH, Lyons SC. (1960) Further correlation of kaolinite crystallinity with chemical and physical properties. Clays Clay Miner 8: 11-17. |
[51] | Sun J, Wang F, Sui Y, She Z, Zhai W, Wang C, Deng Y. (2012) Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals. Int J Nanomed 7: 5733-5744. |
[52] | Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J. (2014) Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm Sci 9: 304-316. |
[53] | Buckton G, Beezer AE. (1992) The relationship between particle size and solubility. Int J Pharmaceutics 82: R7-R10. |
[54] | Stuart BH. (2004) Infrared spectroscopy: Fundamentals and applications in Analytical Techniques in the Sciences. John Wiley & Sons Ltd., Chichester, UK. |
[55] | Hesse M, Meier H, Zeeh B. (1997) Spectroscopic methods in organic chemistry, Georg Thieme Verlag Stuttgart, New York. |
[56] | Bajaj S, Singla D, Sakhuja N. (2012) Stability testing of pharmaceutical products. J.. App Pharm Sci 2: 129-138. |
APA Style
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Michael Peter Ellis, et al. (2017). Evaluation of the Physicochemical, Structural, Thermal, and Behavioral Properties of the Energy of Consciousness Healing Treated Zinc Chloride. American Journal of Bioscience and Bioengineering, 5(2), 65-74. https://doi.org/10.11648/j.bio.20170502.12
ACS Style
Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak; Michael Peter Ellis, et al. Evaluation of the Physicochemical, Structural, Thermal, and Behavioral Properties of the Energy of Consciousness Healing Treated Zinc Chloride. Am. J. BioSci. Bioeng. 2017, 5(2), 65-74. doi: 10.11648/j.bio.20170502.12
AMA Style
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Michael Peter Ellis, et al. Evaluation of the Physicochemical, Structural, Thermal, and Behavioral Properties of the Energy of Consciousness Healing Treated Zinc Chloride. Am J BioSci Bioeng. 2017;5(2):65-74. doi: 10.11648/j.bio.20170502.12
@article{10.11648/j.bio.20170502.12, author = {Mahendra Kumar Trivedi and Alice Branton and Dahryn Trivedi and Gopal Nayak and Michael Peter Ellis and James Jeffery Peoples and James Joseph Meuer and Johanne Dodon and John Lawrence Griffin and John Suzuki and Joseph Michael Foty and Judy Weber and Julia Grace McCammon and Karen Brynes Allen and Kathryn Regina Sweas and Lezley Jo-Anne Wright and Lisa A. Knoll and Madeline E. Michaels and Margaret Kweya Wahl and Mark E. Stutheit and Michelle Barnard and Muriel Mae Ranger and Paromvong Sinbandhit and V. J. Kris Elig and Kalyan Kumar Sethi and Parthasarathi Panda and Snehasis Jana}, title = {Evaluation of the Physicochemical, Structural, Thermal, and Behavioral Properties of the Energy of Consciousness Healing Treated Zinc Chloride}, journal = {American Journal of Bioscience and Bioengineering}, volume = {5}, number = {2}, pages = {65-74}, doi = {10.11648/j.bio.20170502.12}, url = {https://doi.org/10.11648/j.bio.20170502.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.bio.20170502.12}, abstract = {Zinc chloride is a source of zinc used in various pharmaceutical/nutraceutical formulations. The objective of the current study was to investigate the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Treatment) on physical, structural, thermal, and behavioral properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, and DSC analysis. Zinc chloride was divided into two parts – one part was control, while another part was treated with The Trivedi Effect® remotely by twenty renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. A significant alteration of the crystallite size and relative intensities of the PXRD peaks was observed in The Trivedi Effect® treated sample compared with the control sample. The average crystallite size of the treated sample was significantly increased by 23.18% compared with the control sample. The particle size values at d10, d50, and d90 values were significantly decreased by 3.70%, 4.13%, and 6.13%, respectively in the treated sample compared with the control sample. Therefore, the surface area of the treated sample was increased by 4.21% compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control sample was found at 512 cm-1, whereas it was significantly shifted upward to 520 cm-1 in the treated sample. The UV-vis analysis exhibited that wavelength of the maximum absorbance (λmax) of the control and treated samples were at 197.6 nm and 197.1 nm, respectively. The DSC analysis exhibited that the melting temperature was decreased by 0.22%, while decomposition temperature was increased by 2.56% in the treated sample compared to the control sample. The latent heat of fusion of the treated sample (320.44 J/g) was significantly decreased by 16.70% compared with the control sample (284.67 J/g). Similarly, the enthalpy of decomposition of the treated sample (952.53 J/g) was significantly increased by 122.61% compared with the control sample (427.90 J/g). Thus, the results indicated that the thermal stability of the treated zinc chloride was improved compared with the control sample. The current study anticipated that The Trivedi Effect® - Energy of Consciousness Healing Treatment might lead to produce a thermally stable new polymorphic form of zinc chloride, which would be more soluble and bioavailable compared with the untreated compound. Hence, the treated zinc chloride would be very useful to design better nutraceutical/pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc.}, year = {2017} }
TY - JOUR T1 - Evaluation of the Physicochemical, Structural, Thermal, and Behavioral Properties of the Energy of Consciousness Healing Treated Zinc Chloride AU - Mahendra Kumar Trivedi AU - Alice Branton AU - Dahryn Trivedi AU - Gopal Nayak AU - Michael Peter Ellis AU - James Jeffery Peoples AU - James Joseph Meuer AU - Johanne Dodon AU - John Lawrence Griffin AU - John Suzuki AU - Joseph Michael Foty AU - Judy Weber AU - Julia Grace McCammon AU - Karen Brynes Allen AU - Kathryn Regina Sweas AU - Lezley Jo-Anne Wright AU - Lisa A. Knoll AU - Madeline E. Michaels AU - Margaret Kweya Wahl AU - Mark E. Stutheit AU - Michelle Barnard AU - Muriel Mae Ranger AU - Paromvong Sinbandhit AU - V. J. Kris Elig AU - Kalyan Kumar Sethi AU - Parthasarathi Panda AU - Snehasis Jana Y1 - 2017/04/01 PY - 2017 N1 - https://doi.org/10.11648/j.bio.20170502.12 DO - 10.11648/j.bio.20170502.12 T2 - American Journal of Bioscience and Bioengineering JF - American Journal of Bioscience and Bioengineering JO - American Journal of Bioscience and Bioengineering SP - 65 EP - 74 PB - Science Publishing Group SN - 2328-5893 UR - https://doi.org/10.11648/j.bio.20170502.12 AB - Zinc chloride is a source of zinc used in various pharmaceutical/nutraceutical formulations. The objective of the current study was to investigate the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Treatment) on physical, structural, thermal, and behavioral properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, and DSC analysis. Zinc chloride was divided into two parts – one part was control, while another part was treated with The Trivedi Effect® remotely by twenty renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. A significant alteration of the crystallite size and relative intensities of the PXRD peaks was observed in The Trivedi Effect® treated sample compared with the control sample. The average crystallite size of the treated sample was significantly increased by 23.18% compared with the control sample. The particle size values at d10, d50, and d90 values were significantly decreased by 3.70%, 4.13%, and 6.13%, respectively in the treated sample compared with the control sample. Therefore, the surface area of the treated sample was increased by 4.21% compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control sample was found at 512 cm-1, whereas it was significantly shifted upward to 520 cm-1 in the treated sample. The UV-vis analysis exhibited that wavelength of the maximum absorbance (λmax) of the control and treated samples were at 197.6 nm and 197.1 nm, respectively. The DSC analysis exhibited that the melting temperature was decreased by 0.22%, while decomposition temperature was increased by 2.56% in the treated sample compared to the control sample. The latent heat of fusion of the treated sample (320.44 J/g) was significantly decreased by 16.70% compared with the control sample (284.67 J/g). Similarly, the enthalpy of decomposition of the treated sample (952.53 J/g) was significantly increased by 122.61% compared with the control sample (427.90 J/g). Thus, the results indicated that the thermal stability of the treated zinc chloride was improved compared with the control sample. The current study anticipated that The Trivedi Effect® - Energy of Consciousness Healing Treatment might lead to produce a thermally stable new polymorphic form of zinc chloride, which would be more soluble and bioavailable compared with the untreated compound. Hence, the treated zinc chloride would be very useful to design better nutraceutical/pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc. VL - 5 IS - 2 ER -