This study uses first-principles DFT to investigate the regulatory mechanism of Cr doping on C3N2 monolayer adsorption of CH4, CO2, and C2N2. Results show Cr atoms stably incorporate into C3N2 pore sites (binding energy: -4.26 eV), altering electronic properties via Cr-3d/N-2p hybridization. Adsorption analyses reveal selective capture: C2N2 shows strong chemisorption via Cr-N covalent bonding (Eads: -2.148 eV, ΔQ: -0.034 e), CO2 moderate adsorption via Cr-O polar interactions (-0.866 eV, -0.082 e), and CH4 physical adsorption (-0.305 eV, 0.004 e). Density of states analysis clarifies hybridization mechanisms, while work function calculations show a 9.2% increase upon C2N2 adsorption, confirming its potential as a gas sensor. This work provides a novel 2D nitride design for insulation fault gas detection and advances understanding of gas-sensitive interfacial interactions.
Published in | Composite Materials (Volume 9, Issue 1) |
DOI | 10.11648/j.cm.20250901.12 |
Page(s) | 18-27 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Cr-C3N2, Insulating Decomposition Gases, Selective Adsorption, DFT
System (doping modification) | (Ha) | Eads (eV) | (e) | Distance (Å) | Structure |
---|---|---|---|---|---|
Cr-C3N2@CO2 | 0.187 | -0.866 | -0.047 | 2.302 | |
Cr-C3N2@CH4 | 0.196 | -0.305 | -0.004 | 4.138 | |
Cr-C3N2@C2N2 | 0.213 | -2.148 | -0.034 | 1.933 |
Gas type | Sensing material | Eads (eV) | Ref. |
---|---|---|---|
CO2 | Cr-C3N2 | -0.866 | Our work |
C2N2 | Cr-C3N2 | -2.148 | |
CH4 | Cr-C3N2 | -0.305 | |
CO2 | Pt-C3N2 | -0.214 | [46] |
C2N2 | Pt-C3N2 | -0.1 | |
CH4 | Pt-C3N2 | -0.096 |
DFT | Density Functional Theory |
Cr-C3N2 | Cr Atom Doping Modification of C3N2 Base |
Eads | Adsorption Energy |
Eb | System Binding Energy |
ΔQ | Charge Transfer |
GIS | Gas Insulated Switchgear |
GIL | Gas Insulated Metal-enclosed Transmission Line |
DOS | Density of States |
TDOS | Total Density of States |
PDOS | Partial Density of States |
[1] | Huang, H., Yu, Y., Zhang, M., 2020. Analysis of adsorption properties of SF6 decomposed gases (SOF2, SO2F2, SF4, CF4, and HF) on Fe-doped SWCNT: A DFT study. Appl. Surf. Sci. 505, 144622. |
[2] | Li, B., Zhou, Q., Peng, R., Liao, Y., Zeng, W., 2021. Adsorption of SF6 decomposition gases (H2S, SO2, SOF2 and SO2F2) on Sc-doped MoS2 surface: A DFT study. Appl. Surf. Sci. 549, 149271. |
[3] | Ye, F., Zhang, X., Li, Y., Wan, Q., Bauchire, J.-M., Hong, D., Xiao, S., Tang, J., 2022. Arc decomposition behavior of C4F7N/Air gas mixture and biosafety evaluation of its by-products. High Volt. 7, 856–865. |
[4] | Sang, T.-Y., Sun, H., Hu, X., Li, T., Guo, L.-Y., Peng, Z., Wang, G., Zhu, C., Zou, S., Zhang, X., Wang, S., Li, W., Chen, W., 2022. 38Theoretical Exploration of C4F7N Decompositions on GeSe Monolayers for Gas Sensing Based on DFT Method. IEEE Sens. J. 22, 13915–13920. |
[5] | Gao, W., Posada, L., Shiravand, V., Shubhashish, S., Price, C., Zhang, B., Potyrailo, R., Younsi, K., Shan, S., Ndiaye, I., Cabrera, C., Zhou, J., Perret, M., Berteloot, T., Kieffel, Y., Laso, A., Uzelac, N., Suib, S. L., Cao, Y., 2024. Decomposition characteristics of C4F7N-based SF6-alternative gas mixtures. J. Appl. Phys. 135, 063302. |
[6] | Jia, P., Cao, J., Wang, M., Zhang, Y., Liu, J., Xu, M., Chen, D., 2024. Exploration of SF6 and its decomposed gases in adsorption and sensing (four modified WSe2 monolayers at quantum level). Surf. Interfaces 51, 104606. |
[7] | Guo, G., Mao, L., Liu, K., Tan, X., 2024. Pd-Adsorbed SiN3 Monolayer as a Promising Gas Scavenger for SF6 Partial Discharge Decomposition Components: Insights from the First-Principles Study. Langmuir 40, 7669–7679. |
[8] | Cui, H., Zhu, H., Jia, P., 2020. Adsorption and sensing of SO2 and SOF2 molecule by Pt-doped HfSe2 monolayer: A first-principles study. Appl. Surf. Sci. 530, 147242. |
[9] | Zhang, X., Chen, D., Cui, H., Dong, X., Xiao, S., Tang, J., 2017. Understanding of SF6 decompositions adsorbed on cobalt-doped SWCNT: A DFT study. Appl. Surf. Sci. 420, 371–382. |
[10] | Vessally, E., Hosseinali, Mehdi, Poor Heravi, Mohammad Reza, and Mohammadi, B., 2023. DFT study of the adsorption of simple organic sulfur gases on g-C3N4; periodic and non-periodic approaches. J. Sulfur Chem. 44, 733–750. |
[11] | Xu, X.-Y., Xu, H., Guo, H., Zhao, C., 2020. Mechanism investigations on CO oxidation catalyzed by Fe-doped graphene: A theoretical study. Appl. Surf. Sci. 523, 146496. |
[12] | Wang, J.-H., Lin, M. C., 2004. Adsorption and Reaction of C2N2 on Si(100)-2 × 1: A Computational Study with Single- and Double-Dimer Cluster Models. J. Phys. Chem. B 108, 9189–9197. |
[13] | Alamri, S., Rajhi, Ali A., and Derakhshande, M., 2022. Potential detection of C2N2 gas by the pure, Al, and Cu-doped graphynes: a DFT study. Mol. Simul. 48, 574–583. |
[14] | Khatun, M., Rocky, M. H., Roman, A. A., Roy, D., Badsha, Md. A., Ahmed, M. T., 2025. Impact of N-Doping on MoSe2 Monolayer for PH3, C2N2, and HN3 Gas Sensing: A DFT Study. ChemistryOpen 14, e202400210. |
[15] | Zhao, H., He, X., Shi, Z., Li, S., 2024. Adsorption and sensing behavior of Cr-doped WS2 monolayer for hazardous gases in agricultural greenhouses: A DFT study. Mater. Today Commun. 40, 109405. |
[16] | Hu, Y., Wang, L., Nan, R., Xu, N., Jiang, Y., Wang, D., Yan, T., Liu, D., Zhang, Y., Chen, B., 2023. Pore engineering in cost-effective and stable Al-MOFs for efficient capture of the greenhouse gas SF6. Chem. Eng. J. 471, 144851. |
[17] | Zhang, J., Feng, W., Zhang, Y., Zeng, W., Zhou, Q., 2023. Gas-sensing properties and first-principles comparative study of metal (Pd, Pt)-decorated MoSe2 hierarchical nanoflowers for efficient SO2 detection at room temperature. J. Alloys Compd. 968, 172006. |
[18] | Baildya, N.; Mazumdar, S.; Mridha, N. K.; Chattopadhyay, A. P.; Khan, A. A.; Dutta, T.; Mandal, M.; Chowdhury, S. K.; Reza, R.; Ghosh, N. N. Comparative Study of the Efficiency of Silicon Carbide, Boron Nitride and Carbon Nanotube to Deliver Cancerous Drug, Azacitidine: A DFT Study. Comput. Biol. Med. 2023, 154, 106593. |
[19] | Chen, H.; Guo, Y.; Zhou, K.; Wang, J.; Zeng, Z.; Li, L. Mechanism Exploration of Surface Functional Groups and Pore Sizes on CO2 Adsorptive Separation by GCMC and DFT Simulations. Sep. Purif. Technol. 2023, 318, 123993. |
[20] | Zhang, H.; Zhou, W.; Jiang, J.; Zeng, W.; Zhou, Q. First-Principles Investigation of Transition Metal (Co, Rh, and Ir)-Modified WS2 Monolayer Membranes: Adsorption and Detection of SF6 Decomposition Gases. ACS Appl. Nano Mater. 2024, 7 (11), 13379–13391. |
[21] | Xu, L., Zhu, H., Gui, Y., Long, Y., Wang, Q., Yang, P., 2020. First-Principles Calculations of Gas-Sensing Properties of Pd Clusters Decorated AlNNTs to Dissolved Gases in Transformer Oil. IEEE Access 8, 162692–162700. |
[22] | Yin, X.-T., Liu, Y., Tan, X.-M., Gao, X.-C., Li, J., Ma, X., 2022. New Analysis Method for Adsorption in Gas (H2, CO)–Solid (SnO2) Systems Based on Gas Sensing. ACS Omega 7, 21262–21266. |
[23] | Cao, J.; Wang, M.; Zhang, Y.; Liu, J.; Xu, M.; Chen, D.; Jia, P. Gas Sensitivity Evaluation of Decomposition Gases in Environmentally Friendly Insulating Devices (C4F7N/CO2) (Chromium Cluster-Modified BNNTs Surface Interface at the Atomic Scale). Surf. Interfaces 2024, 54, 105202. |
[24] | Yu, W.; Zhu, Y.; Zhao, J.; Zhu, P. DFT-Based Adsorption Studies of CNCl, HCN, and NH3 on Metal-Doped Diamane. Appl. Surf. Sci. 2024, 670, 160672. |
[25] | Cui, Z., Yang, K., Shen, Y., Yuan, Z., Dong, Y., Yuan, P., Li, E., 2023. Toxic gas molecules adsorbed on intrinsic and defective WS2: gas sensing and detection. Appl. Surf. Sci. 613, 155978. |
[26] | Wang, R., Cheng, B., Ou, W., 2023. 48Intrinsic and Ag-doped graphdiyne as a two-dimensional material gas sensing detector for the detection of SF6 decomposition products. Appl. Surf. Sci. 608, 155276. |
[27] | Zhu, J., Zhang, H., Tong, Y., Zhao, L., Zhang, Y., Qiu, Y., Lin, X., 2017. First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: Structural stability, electronic properties and adsorption of gas molecules. Appl. Surf. Sci. 419, 522–530. |
[28] | Bals, S., Marin, G. B., Detavernier, C., Dendooven, J., 2019. Chemical and Structural Configuration of Pt-Doped Metal Oxide Thin Films Prepared by Atomic Layer Deposition. Chem. Mater. 31, 9673–9683. |
[29] | Peter, C. N., Anku, W. W., Shukla, S. K., Govender, P. P., 2018. Theoretical studies of the interfacial charge transfer and the effect of vdW correction on the interaction energy of non-metal doped ZnO and graphene oxide interface. Theor. Chem. Acc. 137, 75. |
[30] | Liu, Z., Gui, Y., Xu, L., Chen, X., 2022. Adsorption and Sensing Performance of Transition Metal (Ag, Pd, Pt, Rh, and Ru) Modified WSe2 Monolayer for SF6 Decomposition Gases (SOF2 and SO2F2). Appl. Surf. Sci. 581, 152365. |
[31] | Zhang, X., Qiao, H., Sun, H., Wang, P., Tao, L.-Q., 2023. Adsorption of SF6 gas and insulating oil decomposition gas by CoO-doped SnSe monolayer in various environments: A study of strong adsorption performance. Chem. Phys. 573, 112001. |
[32] | Ueda, T., Boehme, I., Hyodo, T., Shimizu, Y., Weimar, U., Barsan, N., 2021. Effects of Gas Adsorption Properties of an Au-Loaded Porous In2O3 Sensor on NO2-Sensing Properties. ACS Sens. 6, 4019–4028. |
[33] | Peng, W., Guo, Y., Zhang, Y., Wu, W., Liu, Y., Zhou, Z., 2020. A first-principles investigation of double transition metal atoms embedded C2N monolayer as a promising SF6 gas adsorbent and scavenger. Mater. Chem. Phys. 240, 122184. |
[34] | Galstyan, V., Moumen, A., Kumarage, G. W. C., Comini, E., 2022. Progress towards chemical gas sensors: Nanowires and 2D semiconductors. Sens. Actuators B Chem. 357, 131466. |
[35] | Cao, J., Wang, M., Zhang, Y., Liu, J., Chen, D., Jia, P., 2024. CoO-SnSe monolayer: A high potential candidate for SF6 characteristic decomposition gas adsorption and detection. Colloids Surf. Physicochem. Eng. Asp. 688, 133671. |
[36] | Salih, E., Ayesh, A. I., 2021. Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO2: DFT study. Phys. E Low-Dimens. Syst. Nanostructures 125, 114418. |
[37] | Wang, M., Zhou, Q., Zeng, W., 2022. Theoretical study on adsorption of SF6 decomposition gas in GIS gas cell based on intrinsic and Ni-doped MoTe2 monolayer. Appl. Surf. Sci. 591, 153167. |
[38] | Zhu, J., Zins, E.-L., Alikhani, M. E., 2018. Dehydrocoupling of dimethylamine borane by titanocene: elucidation of ten years of inconsistency between theoretical and experimental descriptions. Phys. Chem. Chem. Phys. 20, 15687–15695. |
[39] | Jia, P., Qiao, S., Wang, Y., Liu, Y., 2021. Pd-decorated GaN monolayer as a promising scavenger for SO2 and SOF2 in SF6 insulation equipment: A first-principles study. Comput. Theor. Chem. 1201, 113276. |
[40] | Diao, Y., Liu, L., Xia, S., 2018. Adsorption of residual gas molecules on (10–10) surfaces of pristine and Zn-doped GaAs nanowires. J. Mater. Sci. 53, 14435–14446. |
[41] | Deng, P., Cheng, L., Jiang, P., Zeng, Z., Li, A., Liao, C., 2022. Sensing performance of CdPc monolayer toward the SF6 decomposition gases: A DFT study. Chem. Phys. Lett. 806, 140030. |
[42] | Zhang, Q., Gui, Y., Qiao, H., Chen, X., Cao, L., 2022. Theoretical study of SF6 decomposition products adsorption on metal oxide cluster-modified single-layer graphene. J. Ind. Eng. Chem. 105, 278–290. |
[43] | Sun, M.; Chen, M.; Cui, X.; Zhao, Z.; Wang, J.; Liang, L.; Zhou, Y. Unveiling the Gas Sensing Potential of CxNy Monolayer through Ab Initio Screening. Surf. Interfaces 2023, 42, 103313. |
[44] | Zeng, L.; Zhang, Z.; Zhou, C.; Liao, M.; Sun, C. Molecular Dynamics Simulation and DFT Calculations on the Oil-Water Mixture Separation by Single-Walled Carbon Nanotubes. Appl. Surf. Sci. 2020, 523, 146446. |
[45] | Zhao, C.; Zhang, W.; Zhang, Y.; Yang, Y.; Guo, D.; Liu, W.; Liu, L. Influence of Multivalent Background Ions Competition Adsorption on the Adsorption Behavior of Azo Dye Molecules and Removal Mechanism: Based on Machine Learning, DFT and Experiments. Sep. Purif. Technol. 2024, 341, 126810. |
[46] | Wang, T., Hu, X., Yang, H., Chen, L., Cao, J., Jia, P., Zhang, Y., 2025. Design of Pt-C3N2 composites for efficient real-time monitoring of fluorocarbon insulation gas decomposition and its application in GIS equipment. Surf. Interfaces 68, 106721. |
APA Style
Wang, T., Hu, X., Yang, H. Y., Chen, L., Cao, J., et al. (2025). Orbital Hybridation-Driven Selective Adsorption in Cr-Doped C3N2 Monolayers: A DFT Exploration for High-Performance Insulating Gas Sensing. Composite Materials, 9(1), 18-27. https://doi.org/10.11648/j.cm.20250901.12
ACS Style
Wang, T.; Hu, X.; Yang, H. Y.; Chen, L.; Cao, J., et al. Orbital Hybridation-Driven Selective Adsorption in Cr-Doped C3N2 Monolayers: A DFT Exploration for High-Performance Insulating Gas Sensing. Compos. Mater. 2025, 9(1), 18-27. doi: 10.11648/j.cm.20250901.12
@article{10.11648/j.cm.20250901.12, author = {Tao Wang and Xuchu Hu and Huan Yang Yang and Lei Chen and Jianjun Cao and Pengfei Jia and Yiyi Zhang}, title = {Orbital Hybridation-Driven Selective Adsorption in Cr-Doped C3N2 Monolayers: A DFT Exploration for High-Performance Insulating Gas Sensing }, journal = {Composite Materials}, volume = {9}, number = {1}, pages = {18-27}, doi = {10.11648/j.cm.20250901.12}, url = {https://doi.org/10.11648/j.cm.20250901.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.cm.20250901.12}, abstract = {This study uses first-principles DFT to investigate the regulatory mechanism of Cr doping on C3N2 monolayer adsorption of CH4, CO2, and C2N2. Results show Cr atoms stably incorporate into C3N2 pore sites (binding energy: -4.26 eV), altering electronic properties via Cr-3d/N-2p hybridization. Adsorption analyses reveal selective capture: C2N2 shows strong chemisorption via Cr-N covalent bonding (Eads: -2.148 eV, ΔQ: -0.034 e), CO2 moderate adsorption via Cr-O polar interactions (-0.866 eV, -0.082 e), and CH4 physical adsorption (-0.305 eV, 0.004 e). Density of states analysis clarifies hybridization mechanisms, while work function calculations show a 9.2% increase upon C2N2 adsorption, confirming its potential as a gas sensor. This work provides a novel 2D nitride design for insulation fault gas detection and advances understanding of gas-sensitive interfacial interactions. }, year = {2025} }
TY - JOUR T1 - Orbital Hybridation-Driven Selective Adsorption in Cr-Doped C3N2 Monolayers: A DFT Exploration for High-Performance Insulating Gas Sensing AU - Tao Wang AU - Xuchu Hu AU - Huan Yang Yang AU - Lei Chen AU - Jianjun Cao AU - Pengfei Jia AU - Yiyi Zhang Y1 - 2025/06/23 PY - 2025 N1 - https://doi.org/10.11648/j.cm.20250901.12 DO - 10.11648/j.cm.20250901.12 T2 - Composite Materials JF - Composite Materials JO - Composite Materials SP - 18 EP - 27 PB - Science Publishing Group SN - 2994-7103 UR - https://doi.org/10.11648/j.cm.20250901.12 AB - This study uses first-principles DFT to investigate the regulatory mechanism of Cr doping on C3N2 monolayer adsorption of CH4, CO2, and C2N2. Results show Cr atoms stably incorporate into C3N2 pore sites (binding energy: -4.26 eV), altering electronic properties via Cr-3d/N-2p hybridization. Adsorption analyses reveal selective capture: C2N2 shows strong chemisorption via Cr-N covalent bonding (Eads: -2.148 eV, ΔQ: -0.034 e), CO2 moderate adsorption via Cr-O polar interactions (-0.866 eV, -0.082 e), and CH4 physical adsorption (-0.305 eV, 0.004 e). Density of states analysis clarifies hybridization mechanisms, while work function calculations show a 9.2% increase upon C2N2 adsorption, confirming its potential as a gas sensor. This work provides a novel 2D nitride design for insulation fault gas detection and advances understanding of gas-sensitive interfacial interactions. VL - 9 IS - 1 ER -