In this paper, by considering the tensor product of a bi-Frobenius algebra and a weak Hopf algebra, a lot of examples of the generalized weak bi-Frobenius algebras are given, such as the 16-dimensional, 24-dimensional and 40-dimensional GWBF algebras. They provide a common generalization of weak Hopf algebras introduced by Böhm, Nill, Szlachányi, and of bi-Frobenius algebras introduced by Doi and Takeuchi.
Published in | International Journal of Discrete Mathematics (Volume 4, Issue 1) |
DOI | 10.11648/j.dmath.20190401.16 |
Page(s) | 38-44 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Examples, Bi-Frobenius Algebras, Generalized Weak Bi-Frobenius Algebras
[1] | Y. Doi. Substructures of bi-Frobenius algebras. J. Algebra 256 (2), 568-582, 2002. |
[2] | Y. Doi, M. Takeuchi. Bi-Frobenius algebras. New trends in Hopf algebra theory (La Falda, 1999), 67-97, Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000. |
[3] | Q. G. Chen, S. H. Wang. Radford’s formula for generalized weak biFrobenius algebras. Rocky Mountain J. Math. 44 (2), 419-433, 2014. |
[4] | J. Bichon. The group of bi-Galois objects over the coordinate algebra of the Frobenius-Lusztig kernel of SL (2). Glasg. Math. J. 58 (3), 727-738, 2016. |
[5] | Y. Y. Chen, L. Y. Zhang. The structure and construction of bi-Frobenius Hom-algebras. Comm. Algebra 45 (5), 2142-2162, 2017. |
[6] | Z. H. Wang, L. B. Li. Double Frobenius algebras. Front. Math. China 13 (2), 399-415, 2018. |
[7] | Y. H. Wang, X. W. Chen. Construct non-graded bi-Frobenius algebras via quivers. Sci. China Ser. A 50 (3), 450-456, 2007. |
[8] | G. Böhm, F. Nill, K. Szlachányi. Weak Hopf Algebras - I. Integral Theory and C* -Structure. J. Algebra 221, 385-438, 1999. |
[9] | D. Nikshych. Semisimple weak Hopf algebras. J. Algebra 275 (2), 639-667, 2004. |
[10] | D. Bulacu. A Clifford algebra is a weak Hopf algebra in a suitable symmetric monoidal category. J. Algebra 332, 244–284, 2011. |
[11] | H. X. Zhu. The quantum double of a factorizable weak Hopf algebra. Comm. Algebra 45 (9), 4067-4083, 2017. |
[12] | Y. H. Wang. Braided bi-Frobenius algebras. (Chinese) Chinese Ann. Math. Ser. A 28 (2), 203-214, 2007. |
[13] | Y. H. Wang, P. Zhang. Construct bi-Frobenius algebras via quivers. Tsukuba J. Math. 28 (1), 215-221, 2004. |
[14] | N. Yamatan. S4-formula and S2-formula for quasi-triangular bi-Frobenius algebras. Tsukuba J. Math. 26 (2), 339-349, 2002. |
[15] | C. Kassel. Quantum Groups, Springer-Verlag, New York, 1995. |
APA Style
Yan Sun, Xiaohui Zhang. (2019). A Lot of Examples of Generalized Weak Bi-Frobenius Algebras. International Journal of Discrete Mathematics, 4(1), 38-44. https://doi.org/10.11648/j.dmath.20190401.16
ACS Style
Yan Sun; Xiaohui Zhang. A Lot of Examples of Generalized Weak Bi-Frobenius Algebras. Int. J. Discrete Math. 2019, 4(1), 38-44. doi: 10.11648/j.dmath.20190401.16
AMA Style
Yan Sun, Xiaohui Zhang. A Lot of Examples of Generalized Weak Bi-Frobenius Algebras. Int J Discrete Math. 2019;4(1):38-44. doi: 10.11648/j.dmath.20190401.16
@article{10.11648/j.dmath.20190401.16, author = {Yan Sun and Xiaohui Zhang}, title = {A Lot of Examples of Generalized Weak Bi-Frobenius Algebras}, journal = {International Journal of Discrete Mathematics}, volume = {4}, number = {1}, pages = {38-44}, doi = {10.11648/j.dmath.20190401.16}, url = {https://doi.org/10.11648/j.dmath.20190401.16}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.dmath.20190401.16}, abstract = {In this paper, by considering the tensor product of a bi-Frobenius algebra and a weak Hopf algebra, a lot of examples of the generalized weak bi-Frobenius algebras are given, such as the 16-dimensional, 24-dimensional and 40-dimensional GWBF algebras. They provide a common generalization of weak Hopf algebras introduced by Böhm, Nill, Szlachányi, and of bi-Frobenius algebras introduced by Doi and Takeuchi.}, year = {2019} }
TY - JOUR T1 - A Lot of Examples of Generalized Weak Bi-Frobenius Algebras AU - Yan Sun AU - Xiaohui Zhang Y1 - 2019/04/26 PY - 2019 N1 - https://doi.org/10.11648/j.dmath.20190401.16 DO - 10.11648/j.dmath.20190401.16 T2 - International Journal of Discrete Mathematics JF - International Journal of Discrete Mathematics JO - International Journal of Discrete Mathematics SP - 38 EP - 44 PB - Science Publishing Group SN - 2578-9252 UR - https://doi.org/10.11648/j.dmath.20190401.16 AB - In this paper, by considering the tensor product of a bi-Frobenius algebra and a weak Hopf algebra, a lot of examples of the generalized weak bi-Frobenius algebras are given, such as the 16-dimensional, 24-dimensional and 40-dimensional GWBF algebras. They provide a common generalization of weak Hopf algebras introduced by Böhm, Nill, Szlachányi, and of bi-Frobenius algebras introduced by Doi and Takeuchi. VL - 4 IS - 1 ER -