| Peer-Reviewed

Determining and Modelling of Thermal and Rheological Properties of Cashew Apple By-Products

Received: 2 February 2018     Accepted: 16 February 2018     Published: 16 March 2018
Views:       Downloads:
Abstract

This study aims to determine thermal and rheological properties of blended cashew apple juice (cajuína), nectar, and pulp. The effects of temperature on rheological properties were evaluated and the behavior was adjusted to rheological models. Comparing the thermal properties of cashew products, cajuína showed lower density, and higher values of thermal conductivity, thermal diffusivity and specific heat. Equations providing these properties in function of temperature were obtained, and presented good fits. Cajuína and cashew apple pulp were well characterized by the Ostwald-de-Waelle and Hershel-Bulkley models, respectively, while for cashew apple nectar, two behaviors were observed depending on the temperature used.

Published in Engineering and Applied Sciences (Volume 3, Issue 1)
DOI 10.11648/j.eas.20180301.15
Page(s) 29-39
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

Cashew Tree and By-products, Thermal and Rheological Properties, Rheological Modeling

References
[1] IBGE, 2012. Levantamento Sistemático da Produção Agrícola: Pesquisa Mensal de Previsão e Acompanhamento das Safras Agrícolas no Ano Civil, Rio de Janeiro, 25:1-88. ftp://ftp.ibge.gov.br/Producao_Agricola/Levantamento_Sistematico_da_Producao_Agricola_[mensal]/Fasciculo/2012/lspa_201202.pdf. Accessed 25 January 2015.
[2] Agostini-Costa T. S., A. Lima, and M. V. Lima. (2003). Tannin in cashew apple: vanillin versus butanol acid assay. Química Nova, 26:763-765.
[3] Santos R. P., A. A. X. Santiago, C. A. A. Gadelha, J. B. Cajazeiras, B. S. Cavada, J. L. Martins, T. M. Oliveira, G. A. Bezerra, R. P. Santos, and V. N. Freire. (2007). Production and characterization of the cashew (Anacardium occidentale L.) peduncle bagasse ashes. Journal of Food Engineering, 79:1432-1437.
[4] Michodjehoun-Mestres L, J. M. Souquet, H. Fulcrand, E. Meudec, M. Reynes, and J. M. Bailout. (2009). Characterization of highly polymerized from skin and flesh of four cashew apple (Anacardium occidentale L.) genotypes. Food Chemistry, 114:989-995.
[5] Cruz N. J. T., M. V. Silva, and R. A. Moraes Filho. (2007). Consumo dos principais produtos derivados do caju e potencialidade dos produtos alternativos do caju na cidade de Maceió-Alagoas/Brazil. XLV Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural "Conhecimentos para Agricultura do Futuro". Londrina/PR, Brazil. http://www.sober.org.br/palestra/6/874.pdf Accessed 20 june 2015.
[6] Holanda J. S., J. F. Torres, M. T. Oliveira, L. Ferreira Filho, and A. C. Holanda. (2010). Da carne de caju à carne de cordeiro. Boletim de Pesquisa e Desenvolvimento. Nº 35 ISSN 01012975, EMPARN - Empresa de Pesquisa Agropecuária do RN, Brazil, pp: 42. http://adcon.rn.gov.br/ACERVO/EMPARN/DOC/DOC000000000000565.PDF. Accessed 10 September 2015.
[7] Campos D. C. P., A. S. Santos, D. B. Wolkoff, V. M. Matta, L. M. C Cabral, and S. Couri, (2002). Cashew apple juice stabilization by microfiltration. Desalination, 148:61-65.
[8] Damasceno L. F., F. A. N. Fernandes, M. M. A. Magalhães, and E. S. Brito. (2008). Non-enzymatic browning in clarified cashew apple juice during thermal treatment: Kinetics and process control. Food Chemistry, 106:172–179.
[9] Paiva F. F. A., D. S. Garrutti, and R. M. Silva Neto. (2000). Aproveitamento industrial do caju. Documento 38. Embrapa Agroindústria Tropical, Fortaleza/CE, Brazil, ISSN: 0103-5797, Pages: 88.
[10] Silva Neto R. M., F. A. P. Abreu, and F. F. A. Paiva. (2009). Processamento do pedúnculo de caju: Cajuína. Documento 123. Embrapa Agroindústria Tropical. Fortaleza/CE, Brazil, ISSN: 1677-1915, Pages: 38.
[11] Moura S. C. S. R., S. P. M. Germer, D. C. P. Jardim, and M. S. Sadahlra. (1998). Thermophysical properties of tropical fruit juices. Brazilian Journal of Food Technology., 1:70-76.
[12] Silva F. C., D. H. P. Guimarães, and C. A. Gasparetto, (2005). Rheology of acerola juice: effects of concentration and temperature. Food Science Technology, 25:121-126.
[13] Vidal, R. H. L., and C. G. Pereira. (2015). Ion Exchange Resin Applied to Obtain Clarified Cashew Juice. Separation Science and Technology, 50: 2737-2746.
[14] IAL, 2008. Instituto Adolfo Lutz. Métodos físico-químicos para alimentos. 4ª Ed.; São Paulo/SP, Brazil.
[15] Broadhurst R. B., and W. T. Jones. (1978). Analysis of condensed tannins using acidified vanillin. Journal Science Food Agriculture, 29:788-794.
[16] Oliveira R. G., H. T. Godoy, and M. Prado. (2010). Optimization of a colorimetric method to determine ascorbic acids in fruit jelly. Food Science Technology, 30:244-249.
[17] Cabral R. A. F., C. E. Orrego-Alzate, A. L. Gabas, and J. Telis-Romero, 2007. Rheological and thermophysical properties of blackberry juice. Food Science Technology, 27:589-596.
[18] Brazil, (2003). Ministério da Agricultura, Pecuária e do Abastecimento. Regulamento Técnico para Fixação dos Padrões de Identidade e Qualidade para Néctares de frutas. Instrução Normativa Nº 12, 04 September 2003.
[19] Brazil, (2000). Ministério da Agricultura, Pecuária e do Abastecimento. Regulamento Técnico para Fixação dos Padrões de Identidade e Qualidade para polpa de frutas e suco de caju clarificado ou cajuína. Instrução Normativa Nº 01, 07 January 2000.
[20] Damasceno L. F. (2007). Estudo das interações polifenol-proteína e das reações de escurecimento não-enzimático para o processamento de cajuína. 78 f. Master Thesis. UFRN, DEQ, Natal, Brazil.
[21] Danieli F., L. R. L. G. Costa, L. C Silva, A. S. S. Hara, and A. A. Silva. (2009). Determination of vitamin C in sample orange juice in natura and commercials samples of orange juice pasteurized and bottled in Tetra Pak packages, Journal Health Science Institution., 27:361-365.
[22] Souza L. M., L. P. Barreto, T. M. Moraes, D. F. N. Silva, C. G. S. Oliveira, and G. C. Silva. (2010). Determinação de vitamina C comparando dois métodos volumétricos em sucos de acerola (Malpighia emarginata), goiaba (Psidium guajava) e caju (Anacardium occidentale). X Jornada de Ensino, Pesquisa e Extensão (JEPEX), UFRPE, Recife/PE, Brazil.
[23] Lima F. A., M. A. Raiol, O. G. Bino, C. I. C Barbosa, C. E. Souza, and A. Santos Silva. (2015). Estudo físico-químico e quimiométrico de néctar de caju industrializados. In: 55 Congresso Brasileiro de Química. Recursos Renováveis: Inovação e Tecnologia. Goiânia/GO, Brazil.
[24] Silva Lima E., E. G. Silva, J. M. Moita Neto, and G. C. Moita. (2007). Vitamin C degradation in industrialized cashew juice (Anacardium occidentale L.) and in cajuína. Química Nova, 30:1143-1146.
[25] Oliveira M. E. B., M. S. R. Bastos, T. Feitosa, M. A. A. C. Branco, and M. G. G. Silva. (1999). Physical chemical parameters evaluation of acerola, yellow mombin and cashew apple frozen pulps. Food Science Technology, 19 (3), ISSN: 1678-457X.
[26] Codex Stan 247-2005. Codex general standard for fruit juices and nectars. Codex Stan, pp1-19. file:///C:/Users/Usu%C3%A1rio/Downloads/CXS_247e.pdf. Accessed in 20 june 2016.
[27] Pereira J. M. A. T. K., K. A. M. Oliveira, N. F. F. Soares, M. P. J. C. Gonçalves, C. L. O. Pinto, and E. A. F. Fontes. (2006). Avaliação da qualidade físico-química, microbiológica e microscópica de polpas de frutas congeladas comercializadas na cidade de Viçosa-MG. Alimentos & Nutrition, 17:437-442.
[28] Sancho S. O., G. A. Maia, R. W. Figueiredo, S. Rodrigues, and P. H. M. Sousa. (2007). Physicochemical changes in cashew apple (Anacardium occidentale L.) Juice processing. Food Science Technology, 27:878-882.
[29] Bonomo R. C. F., R. C. I. Fontan, T. S. de Souza, C. M. Veloso, M. F. T. Reis, and S. S. Castro. (2009). Thermophysical properties of cashew juice at different concentrations and temperatures. Revista Brasileira de Produtos Agroindustriais, 11:35-42.
[30] Mattos J. S., and B. J. T. Medeiros. (2008). Density of tropical fruits pulp database and e experimental determination. Revista Brasileira de Engenharia e Biossistemas, 2:109-118.
[31] Meireles M. A. A., and C. G. Pereira (2013). Fundamentos de Engenharia de Alimentos. Vol. 6, Atheneu. (Coleção Ciência, Tecnologia, Engenharia de Alimentos e Nutrição – CCTEAN), São Paulo/SP, Brazil, pp: 815.
[32] Pitombeira G., and C. G. Pereira. (2011). Comportamento reológico das polpas de frutas tropicais congeladas. In: IX Simpósio Latino Americano de Ciência de Alimentos, Campinas/SP, Brazil.
[33] Varela MSS, Pitombeira CGR, Silva ACN, Pereira CG. (2017) Determination and Modeling of Thermophysical and Transport Properties of Tropical Pulps. European Journal of Biophysics. 5 (5): 79-88.
[34] Silva L. M. R., G. A. Maia, R. W. Figueiredo, A. M. Ramos, D. K. R. Holanda, and N. M. Vieira. (2012). Ajuste dos parâmetros reológicos de polpas de acerola, caju e manga em função da temperatura: modelos de Ostwald-de-Waelle, Herschel-Bulkley e Casson. Revista Brasileira de Produtos Agroindustriais, 14:37-49.
[35] Salgado S. M., N. B. Guerra, and A. B. de Melo Filho. (1999). Frozen fruit pulps: effects of the processing on dietary fiber contents. Revista de Nutrição, 12:303-308.
[36] Carneiro F. R. B. D. (2000). Conservação de polpa de açaí por métodos combinados. Master thesis, FEA, UNICAMP, Campinas, Brazil.
[37] Sato A. C., and R. L. Cunha. (2007). Influence of temperature on the rheological behavior of jaboticaba pulp. Food Science Technology, 27:890-896.
[38] Augusto, P. E. D., M. Cristianini, and A. Ibarz (2012). Effect of temperature on dynamic and steady-state shear rheological properties of siriguela (Spondias purpurea L.) pulp. Journal Food Engineering, 108:283–289.
Cite This Article
  • APA Style

    Rogéria Helen Lima Vidal, Fábia Bocayuva Carvalho, Camila Gambini Pereira. (2018). Determining and Modelling of Thermal and Rheological Properties of Cashew Apple By-Products. Engineering and Applied Sciences, 3(1), 29-39. https://doi.org/10.11648/j.eas.20180301.15

    Copy | Download

    ACS Style

    Rogéria Helen Lima Vidal; Fábia Bocayuva Carvalho; Camila Gambini Pereira. Determining and Modelling of Thermal and Rheological Properties of Cashew Apple By-Products. Eng. Appl. Sci. 2018, 3(1), 29-39. doi: 10.11648/j.eas.20180301.15

    Copy | Download

    AMA Style

    Rogéria Helen Lima Vidal, Fábia Bocayuva Carvalho, Camila Gambini Pereira. Determining and Modelling of Thermal and Rheological Properties of Cashew Apple By-Products. Eng Appl Sci. 2018;3(1):29-39. doi: 10.11648/j.eas.20180301.15

    Copy | Download

  • @article{10.11648/j.eas.20180301.15,
      author = {Rogéria Helen Lima Vidal and Fábia Bocayuva Carvalho and Camila Gambini Pereira},
      title = {Determining and Modelling of Thermal and Rheological Properties of Cashew Apple By-Products},
      journal = {Engineering and Applied Sciences},
      volume = {3},
      number = {1},
      pages = {29-39},
      doi = {10.11648/j.eas.20180301.15},
      url = {https://doi.org/10.11648/j.eas.20180301.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.eas.20180301.15},
      abstract = {This study aims to determine thermal and rheological properties of blended cashew apple juice (cajuína), nectar, and pulp. The effects of temperature on rheological properties were evaluated and the behavior was adjusted to rheological models. Comparing the thermal properties of cashew products, cajuína showed lower density, and higher values of thermal conductivity, thermal diffusivity and specific heat. Equations providing these properties in function of temperature were obtained, and presented good fits. Cajuína and cashew apple pulp were well characterized by the Ostwald-de-Waelle and Hershel-Bulkley models, respectively, while for cashew apple nectar, two behaviors were observed depending on the temperature used.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Determining and Modelling of Thermal and Rheological Properties of Cashew Apple By-Products
    AU  - Rogéria Helen Lima Vidal
    AU  - Fábia Bocayuva Carvalho
    AU  - Camila Gambini Pereira
    Y1  - 2018/03/16
    PY  - 2018
    N1  - https://doi.org/10.11648/j.eas.20180301.15
    DO  - 10.11648/j.eas.20180301.15
    T2  - Engineering and Applied Sciences
    JF  - Engineering and Applied Sciences
    JO  - Engineering and Applied Sciences
    SP  - 29
    EP  - 39
    PB  - Science Publishing Group
    SN  - 2575-1468
    UR  - https://doi.org/10.11648/j.eas.20180301.15
    AB  - This study aims to determine thermal and rheological properties of blended cashew apple juice (cajuína), nectar, and pulp. The effects of temperature on rheological properties were evaluated and the behavior was adjusted to rheological models. Comparing the thermal properties of cashew products, cajuína showed lower density, and higher values of thermal conductivity, thermal diffusivity and specific heat. Equations providing these properties in function of temperature were obtained, and presented good fits. Cajuína and cashew apple pulp were well characterized by the Ostwald-de-Waelle and Hershel-Bulkley models, respectively, while for cashew apple nectar, two behaviors were observed depending on the temperature used.
    VL  - 3
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Separation Process in Foods, Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil

  • Laboratory of Separation Process in Foods, Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil

  • Laboratory of Separation Process in Foods, Department of Chemical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil

  • Sections