| Peer-Reviewed

Evaporation Reduction Test of Premium Unleaded Fuel by the Smart Floating Roof Method in a Horizontal Cylindrical Tank

Received: 21 June 2021     Accepted: 26 July 2021     Published: 9 August 2021
Views:       Downloads:
Abstract

The floating roof is originally the device that is easily used in a vertical cylindrical storage tank for volatile products. It covers the evaporative surface which remains constantly circular, regardless of the level of the fluid in the tank. However, in a horizontal cylindrical tank, the extent and shape of the free surface of the fluid, the seat of evaporation, varies according to the residual stock. To this end, the concept of the intelligent or flexible floating roof arises from the problem of pollution and energy losses resulting from the excessive evaporation of unleaded premium fuel (SPb) in the Ivory Coast, in the city of Korhogo, which has a hot and dry climate. Therefore, the objective of this study was to design a floating roof suitable for horizontal cylindrical tanks with a fairly competitive evaporation reduction performance. This study was carried out on an experimental station where two identical tanks were tested in comparative trials. One with a floating polypropylene ball roof and the other without a roof. The respective residual volumes of the fluid in each tank were monitored regularly and concomitantly according to evaporation factors such as temperature and pressure. At the end of these tests, it was found that the flexible floating roof absorbed more losses, with an estimated non-evaporation rate of 88% compared to the tank without the flexible floating roof, whose rate was estimated at 80%, i.e. an added value of 08%. Thus, the layers of beads placed at the gas-liquid interface reduced the heat, mass and pressure transfer between the two fuel phases.

Published in Engineering Physics (Volume 5, Issue 2)
DOI 10.11648/j.ep.20210502.11
Page(s) 15-28
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

Evaporation Reduction, Smart Floating Roof, Horizontal Cylindrical Tank, Premium Unleaded Fuel, Northern Ivory Coast

References
[1] Directives environnementales, sanitaires et sécuritaires pour les terminaux pétroliers de pétrole brut et de produits pétroliers (Directive EHS), 2007. http://www.ifc.org/ifcext/sustainability.nsf/Content/EnvironmentalGuidel.
[2] N. Mhiri, 2009. Étude d’un procédé propre couplant l’absorption gaz/liquide microstructurée avec la distillation pour le traitement d’air chargé par un Composé Organique Volatil, 2-9. NNT: 2009INPL030N. tel-01748717.
[3] A. Lemor, 2006. Directives COV et alternative lipochimique: peintures, encres, nettoyage, dégraissage, OCL VOL. 13 N° 2-3 MARS-JUIN 2006, 171-177. http://dx.doi.org/10.1051/ocl.2006.0034.
[4] G. Reboux, A. P. Bellanger, J. C. Dalphin, 2011. Contre: les composés organiques volatils d’origine fongique ont un impact sur la santéAgainst: Volatil organic compounds of fungal origin have an impact on health, 350-353. DOI: 10.1016/j.reval.2011.01.017.
[5] S. Colombano, A. Saada, E. Victoire, V. Guerin, C. Zornig, L. Amalric, M. Blessing, D. Widory, D. Hube et C. Blanc, 2014. Nature des produits pétroliers et vieillissement. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014, 30, 32.
[6] J. R. V. Mayer, 1845. Premier principe de la thermodynamique-conservation de l’énergie. Bilan d’énergie, 1-7. http://sayede.adlane.free.fr/cours/cesi/1erprincipe.pdf.
[7] J. Marie, 2001. Deuxième communication nationale sur le changement climatique en haiti. Coopération technique fem/pnue/gfl-2328-2724-4867, 35-40.
[8] W. Minko, 2008. Emballements thermiques de réactions: Etude des méthodes de dimensionnement des évents de sécurité applicables aux systèmes hybrides non tempérés, 68-93.
[9] https://tel.archives-ouvertes.fr/tel-00372536.
[10] R. Guillemet, 1992. Protection des réservoirs de stockage sous pression dans les flammes: l’arrosage par ruissellement d’eau et l’ignifugation, 33-46. https://tel.archives-ouvertes.fr/tel-00838726.
[11] M. L. ALBERTSON, 1955. Mechanics of evaporation, 709 et 713. http://dx.doi.org/10.1051/lhb/1955055.
[12] N. Gruyer, 2015. Hydrocarbures pétroliers caractéristiques, devenir et criminalistique environnementale. Études GENV222 et GENV23, Évaluation environnementale stratégique globale sur les Hydrocarbures, 1-55. https://docplayer.fr/52397786-Hydrocarbures-petroliers-caracteristiques-devenir-et-criminalistique-environnementale.html.
[13] J. Triolet et INERIS Paris, 2009. Évaluation de la vitesse d’évaporation et de la concentration d’un composé organique volatile dans l’atmosphère d’un local de travail. INRS, Paris, EB 6058, 1-13.
[14] M. Meybeck, j-p. D. Massa, v. Simon, e. Grasset et l. Torres, 2000. Etude de la distribution atmosphérique de composés organiques volatils aromatiques: benzène, toluène, xylènes (BTX) et du dioxyde d'azote sur l'agglomération toulousaine. Pollution atmosphérique, N°168, 569-581.
[15] Z. Lu, I. Kinefuchi, K. L. Wilke, G. Vaartstra et E. N. Wang, 2019. A unified relationship for evaporation kinetics at low Mach numbers, 1-8. https://doi.org/10.1038/s41467-019-10209-w.
[16] R. Chamayou, 1997. Réservoirs métalliques: stockage des liquides. Généralités, 1-7. BM 6590.
[17] N. Borgetto, 2011. Étude expérimentale du comportement et de l’évaporation d’un film liquide combustible en présence d’une flamme, 11-22. HAL Id: tel-00690528 https://tel.archives-ouvertes.fr/tel-00690528.
[18] Badoris-INERIS, 2005. Toit flottant. INERIS DRA-PREV-Avril 2005 - 46059/liq_infl-toit-flottant-vers1, 2-6.
[19] F-X. Merlin, 2008. Essence sans plomb. Guide d’intervention chimique, 9-24. https://wwz.cedre.fr/content/download/2751/29097/file/Extrait-essence.pdf.
[20] Emerson Automation Solutions, 2018. Surveillance de toit flottant, 00870-0603-5100, rév. AA, Mai 2018, 1-15. http://www.emerson.com/enus/automation/measurement-instrumentation/tank-gauging-system/a.
[21] https://www.imhoftanktechnik.de/avantages_du_toit_flottant.php.
[22] Christian Lachance, 2007. Perte de produit lors de l'inspection d'un distributeur de carburant au détail, 14. https://www.ic.gc.ca/eic/site/mc-mc.nsf/vwapj/PerteDeProduit.pdf/$file/PerteDeProduit.pdf.
[23] E. Le Gentil, 2009. Pollution par les hydrocarbures en Manche et golfe de Gascogne. Risques et prévention entre 1960 et 2004, 26. HAL Id: tel-00435266. https://tel.archives-ouvertes.fr/tel-00435266.
[24] D. Lallement, 2003. The world bank gratefully acknowledges the financial contribution and support from: Energy sector management assistance programme, 35. ESMAP, 28455. http://www.esmap.org.
[25] V. Massardier-INSA de Lyon, 2001. Etat de l’art concernant la compatibilité des matières plastiques, 17-20. https://www.record-net.org/storage/etudes/00-0904-1A/synthese/Synth_record00-0904_1A.pdf.
[26] A. L. Kouakou, 1995. Les haie-vives traditionnelles et modernes en pays senoufo, 13-14. Agritrop.cirad.fr/563530/1/document-563530-pdf.
[27] T. Nkrumah, A. S. Koné, B. Tiembre, I. Mbaye, I. Tanner, M. Cissé, 2014. Variabilité climatique et incidence de la méningite cérébro-spinale dans le district sanitaire de Korhogo (nord de la Côte d'Ivoire). Environnement, risques & santé, Vol. 13, no. 2, 144-152.
[28] D. Dahma, 2017. Quantification des COV émises par les bacs de stockage des hydrocarbures de la raffinerie d’Arzew, 29-90. http://dlibrary.univboumerdes.dz:8080/bitstream/123456789/4160/1/memoire%20de%20fin%20d%27etude.pdf.
[29] B. Abdelkarim, 2015. Contribution à l’étude des transferts de chaleur et de masse au sein d’un espace annulaire elliptique d’axe horizontal, 45-98. https://bu.umc.edu.dz/theses/physique/BOU6836.pdf.
[30] Q. Mouret, 2018. Etude expérimentale des mécanismes d’évaporation d’un film liquide combustible et de la stratification induite, ffNNT: LYSEI022ff. fftel-01817431v2f.
[31] N. ALLEMAND, C. GUEGUEN et J. MARTINEZ, 2007. Emissions de COVNM issues des stations-service VOC émissions from service-stations, 13-31. https://www.ademe.fr/sites/default/files/assets/documents/59332_synthese_stations_service.pdf.
[32] L. Bensefa-Colas, F. Pineau, P. Hadengue, J.-P. Gennart, D. Choudat et F. Conso, 2009. Exposition professionnelle au benzène dans le circuit de distribution des carburants et conséquences pour la surveillance médicale des employés, 143. https://doi.org/10.1016/j.admp.2009.02.012.
[33] AUCHAN Carburant / Centre commercial Aushopping Grand-Plaisir (78), 2017. Dossier d'enregistrement pour une station-service au titre de la rubrique 1435 de la nomenclature des installations classées, Annexe 8 Article 2/2.1.63.1.1242015-V03.https://www.yvelines.gouv.fr/content/download/12719/82067/file/Dossier%20Enregistrement%20station-service%20Plaisir.pdf.
[34] E. Mezger, 1946. Loi de variation de la tension superficielle avec la température, 303-309.
[35] HAL Id: jpa-00233998 https://hal.archives-ouvertes.fr/jpa-00233998.
[36] A-L. Lozano, 2007. Etude expérimentale du changement de phase liquide/gaz dans un sol hygroscopique - Evaporation et condensation de l’eau, dissolution du CO2, 127-138.
[37] https://tel.archives-ouvertes.fr/tel-00567001.
[38] https://www.inrs.fr/dms/inrs/CataloguePapier/ND/TI-ND-2097/nd2097.pdf.
[39] https://www.ademe.fr/sites/default/files/assets/documents/28298_acv_sac_cabas_polypro_2005.pdf.
[40] Statistics canada, 2012. Les pertes d’essence par évaporation des postes d’essence canadiens 2009, 7. n° 16-001-M au catalogue n° 15; ISSN 1917-9707; ISBN 978-1-100-98234-2.
[41] R. Chamayou, 1997. Réservoirs métalliques: stockage des liquides à température ambiante, 4-13.
[42] https://fr.scribd.com/document/355066534/bm6590-pdf.
[43] T. Coulibaly, 1985. Etude complète d’une unité de stockage d’exane, 18-20.
[44] M. Mairesse, J. M. Petit, J. Cheron Et M. Falcy, 1999. Produits De Dégradation Thermique Des Matières Plastiques, 52. N°174-Nd 2097-1200 Ex. N° Cppap804/Ad/Pc/Dc Du 14-03-85.
[45] www.beep.ird.fr/collect/thies/index/assoc/HASHf989.dir/pfe.gm.0343.pdf.
[46] V. Massardier et INSA de Lyon, 2001. Etat de l’art concernant la compatibilité des matières plastiques, 17-20. https://www.record-net.org/storage/etudes/00-0904-1A/synthese/Synth_record00-0904_1A.pdf.
[47] Société Jean BREL. Euro-Matic boules plastiques creuses.
[48] https://www.jeanbrel.com/wp-content/uploads/doc-euromatic-complete-pdf.pdf.
[49] Maths.en. Jean, 1992. Au Palais de la Découverte. Doc Euro-Matic, 90. https://dokumen.tips/documents/mathenjeans-au-palais-de-la-decouverte-1992-de-lecran-dun-carre.html.
[50] ASTM 54B-Volume-Correction-to-15-C. https://fr.scribd.com/document/366788409/ASTM-54B-Volume-Correction-to-15-C-pdf.
[51] M. COULIBALY, 2008. Modélisation micromécanique et caractérisation expérimentale du comportement des matériaux hétérogènes élastoviscoplastiques. Application à la valorisation des polymères recyclés, 26. http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infospratiques/droits/protection.htm.
[52] ECOBILAN PwC, 2005. Evaluations des impacts environnementaux des sacs de caisses. Analyse du cycle de vie de sac caisse en plastique, papier et matériau biodégradable, 6-16.
[53] PSRDO-CER, 2012. Incidences sur l'environnement et la santé humaine de la combustion de déchets plastiques, 2. https://knowledge.uclga.org/IMG/pdf/120524impact1862.pdf.
Cite This Article
  • APA Style

    Bagui Emmanuel, Gbaha Prosper, N. Guessan Kotchi Rémi. (2021). Evaporation Reduction Test of Premium Unleaded Fuel by the Smart Floating Roof Method in a Horizontal Cylindrical Tank. Engineering Physics, 5(2), 15-28. https://doi.org/10.11648/j.ep.20210502.11

    Copy | Download

    ACS Style

    Bagui Emmanuel; Gbaha Prosper; N. Guessan Kotchi Rémi. Evaporation Reduction Test of Premium Unleaded Fuel by the Smart Floating Roof Method in a Horizontal Cylindrical Tank. Eng. Phys. 2021, 5(2), 15-28. doi: 10.11648/j.ep.20210502.11

    Copy | Download

    AMA Style

    Bagui Emmanuel, Gbaha Prosper, N. Guessan Kotchi Rémi. Evaporation Reduction Test of Premium Unleaded Fuel by the Smart Floating Roof Method in a Horizontal Cylindrical Tank. Eng Phys. 2021;5(2):15-28. doi: 10.11648/j.ep.20210502.11

    Copy | Download

  • @article{10.11648/j.ep.20210502.11,
      author = {Bagui Emmanuel and Gbaha Prosper and N. Guessan Kotchi Rémi},
      title = {Evaporation Reduction Test of Premium Unleaded Fuel by the Smart Floating Roof Method in a Horizontal Cylindrical Tank},
      journal = {Engineering Physics},
      volume = {5},
      number = {2},
      pages = {15-28},
      doi = {10.11648/j.ep.20210502.11},
      url = {https://doi.org/10.11648/j.ep.20210502.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ep.20210502.11},
      abstract = {The floating roof is originally the device that is easily used in a vertical cylindrical storage tank for volatile products. It covers the evaporative surface which remains constantly circular, regardless of the level of the fluid in the tank. However, in a horizontal cylindrical tank, the extent and shape of the free surface of the fluid, the seat of evaporation, varies according to the residual stock. To this end, the concept of the intelligent or flexible floating roof arises from the problem of pollution and energy losses resulting from the excessive evaporation of unleaded premium fuel (SPb) in the Ivory Coast, in the city of Korhogo, which has a hot and dry climate. Therefore, the objective of this study was to design a floating roof suitable for horizontal cylindrical tanks with a fairly competitive evaporation reduction performance. This study was carried out on an experimental station where two identical tanks were tested in comparative trials. One with a floating polypropylene ball roof and the other without a roof. The respective residual volumes of the fluid in each tank were monitored regularly and concomitantly according to evaporation factors such as temperature and pressure. At the end of these tests, it was found that the flexible floating roof absorbed more losses, with an estimated non-evaporation rate of 88% compared to the tank without the flexible floating roof, whose rate was estimated at 80%, i.e. an added value of 08%. Thus, the layers of beads placed at the gas-liquid interface reduced the heat, mass and pressure transfer between the two fuel phases.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Evaporation Reduction Test of Premium Unleaded Fuel by the Smart Floating Roof Method in a Horizontal Cylindrical Tank
    AU  - Bagui Emmanuel
    AU  - Gbaha Prosper
    AU  - N. Guessan Kotchi Rémi
    Y1  - 2021/08/09
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ep.20210502.11
    DO  - 10.11648/j.ep.20210502.11
    T2  - Engineering Physics
    JF  - Engineering Physics
    JO  - Engineering Physics
    SP  - 15
    EP  - 28
    PB  - Science Publishing Group
    SN  - 2640-1029
    UR  - https://doi.org/10.11648/j.ep.20210502.11
    AB  - The floating roof is originally the device that is easily used in a vertical cylindrical storage tank for volatile products. It covers the evaporative surface which remains constantly circular, regardless of the level of the fluid in the tank. However, in a horizontal cylindrical tank, the extent and shape of the free surface of the fluid, the seat of evaporation, varies according to the residual stock. To this end, the concept of the intelligent or flexible floating roof arises from the problem of pollution and energy losses resulting from the excessive evaporation of unleaded premium fuel (SPb) in the Ivory Coast, in the city of Korhogo, which has a hot and dry climate. Therefore, the objective of this study was to design a floating roof suitable for horizontal cylindrical tanks with a fairly competitive evaporation reduction performance. This study was carried out on an experimental station where two identical tanks were tested in comparative trials. One with a floating polypropylene ball roof and the other without a roof. The respective residual volumes of the fluid in each tank were monitored regularly and concomitantly according to evaporation factors such as temperature and pressure. At the end of these tests, it was found that the flexible floating roof absorbed more losses, with an estimated non-evaporation rate of 88% compared to the tank without the flexible floating roof, whose rate was estimated at 80%, i.e. an added value of 08%. Thus, the layers of beads placed at the gas-liquid interface reduced the heat, mass and pressure transfer between the two fuel phases.
    VL  - 5
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Industrial Synthesis Processes, Environment and New Energies, Polytechnic Doctoral School, Yamoussoukro, Ivory Coast

  • Mechanical Engineering and Energy Department, National Polytechnic Institute Félix Houphouet-Boigny, Yamoussoukro, Ivory Coast

  • Laboratoire of Motors and Machines for Energy Conversion, National Polytechnic Institute Félix Houphou?t-Boigny, Yamoussoukro, Ivory Coast

  • Sections