Solanum macrocarpon is an important vegetable native to Africa, with leaves and fruits. It is a potential source of income and nutrients that contribute to the nutritional balance of the local population's food intake. However, S. macrocarpon did not attract the interest of researchers in relation to other Solanum species. Indeed, knowledge of the genetic diversity of S. macrocarpon (Gboma Eggplant) in Africa is limited. Although agronomic variations and relationships generally reveal important traits of interest to breeders. This study attempts to estimate the genetic diversity of a collection of S. macrocarpon (32 accessions) from Burkina Faso using SSR markers. The results show that eleven (11) of the 22 SSR markers tested were informative for phylogenetic analysis and could serve as a perfect reference for diversity studies. The 11 polymorphic SSR primers selected amplified 22 alleles with an average of 2 per primer. The polymorphism information content (PIC) varied from 0.212 for emg01B17 to 0.437 for emd15D09. The genetic distances between the accessions studied varied from 0 to 0.68 and made it possible to distinguish three genetic groups. The expected Nei (He) heterozygosity for the genetic group ranged from 0.140 for group III to 0.261 for group I. The eleven pairs of SSR markers sufficiently discriminated against the accessions of S. macrocarpon. The results of this study will be useful for the conservation and genetic improvement of the S. macrocarpon species in Burkina Faso.
Published in | International Journal of Genetics and Genomics (Volume 7, Issue 2) |
DOI | 10.11648/j.ijgg.20190702.12 |
Page(s) | 27-33 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Genetic diversity, Polymorphism, S. macrocarpon, SSR Markers, Burkina Faso
[1] | Whalen M. D., 1984. Conspectus of species groups in Solanum subgenus leptostemonum Gentes Herbarum, 12 (4), 179-282. |
[2] | Shippers, R. R. 2002. African Indigenous Vegetables: An overview of the cultivated species 2002 Revised Version on CD-ROM. Natural Resources Institute, Chatham, UK. pp. 214. |
[3] | Marchoux G., Gognalons P., Sélassié K. G. 2008. Virus des Solanacées. Du génome viral à la protection des cultures. Edition. Quae, Paris, France, 846p. |
[4] | Kaboré B., Traoré R. E., Kiébré Z., Sawadogo B., Kiébré M., Nanema K. R., Sawadogo M., Bationo/Kando P. 2018. Phenotypic diversity of accessions of Gurunsi eggplant (Solanum macrocarpon L.) from Burkina Faso. Glob. J. Crop Soil Sci. Plant Breed. Vol. 6 (1), pp 296-305. |
[5] | Agoreyo B. O., Obansa E. S. and Obanor E. O. 2012. Nutritional and phytochemical analyses of varieties of Solanum melongena. Science World Journal, 7 (1): 23-42. |
[6] | Nyadanu D. and Lowor S. T. 2014. Promoting competitiveness of neglected and underutilized crop species: Comparative analysis of nutritional composition of indigenous and exotic leafy and fruit vegetables in Ghana. Genetic Resources and Crop Evolution, DOI: 10.1007/s10722-014-0162-x. |
[7] | Adeyeye E. I. and Adanlawo I. G. 2011. Aminoacid composition of the ripe fruits of Solanuma ethiopicum and Solanum macrocarpon. International Journal of Pharmacy and Biology Sciences, 2 (2): 40-51. |
[8] | Nwodo S. C., Abayomi C. O., Eboji O. K., Opeyemi C. E., Olajumoke A. K. and Damilola I. D. 2011. Proximate and phytochemical analysis of Solanum aethiopicum L. and Solanum macrocarpon L. fruits. Research Journal of Chemical Sciences, 1 (3): 436-439. |
[9] | Nyadanu D., Aboagye L. M., Akromah R., Osei M. K. and Dordoe M. B. 2014. Agromorphological characterisation of gboma eggplant, an indigenous fruit and leafy vegetable in Ghana. African Crop Science Journal, Vol. 22, No. 4, pp. 281 – 289. |
[10] | Djé Y., Heuertz M., Lefebvre C. and Vekemans X. 2000. Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor Appl Genet 100: 918–92. |
[11] | Baudoin J. P., Demol J., Louant B. P., Maréchal R. et Otoul E. 2002. Amélioration des plantes. Application aux principales espèces cultivées en régions tropicales. Les presses agronomiques de Gembloux. 581p. |
[12] | Demir K, Bakır M, Sarıkamış G, AcunalpS (2010) Genetic diversity of eggplant (Solanum melongena) germplasm from turkey assessed by SSR and RAPD markers. Genet Mol Res 9: 1568-1576. |
[13] | Behera TK, Sharma P, Singh BK, Kumar G, Kumar R, et al. (2006) Assessment of genetic diversity and species relationships in eggplant (Solanum melongena L.) using STMS markers. Scientia Hort 107: 352-57. |
[14] | Kumar S, Mangal M, Dhawan AK, Singh N (2011) Assessment of genetic fidelity of micropropagated plants of Simmondsia chinensis (Link) Schneider using RAPD and ISSR markers. Acta Physiol Plant 33: 2541-2545. |
[15] | Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genet 30: 194-200. |
[16] | Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, et al. (2009) Development of SSR markers derived from SSR- enriched genomic library of eggplant (Solanum melongena L.). Theor. Appl. Genet. 119: 1143-1153. |
[17] | Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, et al. (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12: 304-13. |
[18] | Mangal M, Upadhyay P, Kalia P (2016), Characterization of cultivated and wild Brinjal genotypes (Solanum melongena L.) and confirmation of hybridity using microsatellite markers. Vegetables 29: 2. doi: 10.5958 / 2229-4473.2016.00016.1. |
[19] | Nunome T., Suwabe K., Iketani H. and Hirai M. 2003a. Identification and characterization of microsatellites in eggplant. Plant Breeding 122, 256–262. |
[20] | Maravilla A. M. B., Ocampo E. T. M., Canama A. O. and Delfin E. F. 2017. Hybridity Testing of Eggplant F1 Progenies Derived from Parents with Varying Response to Drought Using SSR Markers. Philippine Journal of Science 146 (3): 277-286. |
[21] | Saracanlao R J R., Ocampo E T M., Canama A O., Manaday S J B., Maghirang R G. and Delfin E F. 2016. SSR-Based Genetic Relationship in Eggplant (Solanum melongena) Genotypes with Varying Morphological Response to drought. Philipine Journal of Crop Science, vol 41 (3): 57-64. |
[22] | Aguoru C. U., Omoigui L. O. and Olasan J. O. 2015. Comparative Optimized procols of DNA Extraction and Purification Using FTA PlantSaver Card and DNAzol Methods for Eggplant (Solanum spieces) Studies in North Central Nigeria. Open Access Library Journal, p1-5. |
[23] | Sambrook J., Fritsch E. F. and Maniatis T., 1989. Molecular cloning. A laboratory manual. Vol. 3. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press. |
[24] | Adeniji O. T., Kusolwa P., Reuben S. O. W. M. and Deo P. 2012. Molecular diversity among seven Solanum (eggplant and relatives) species assessed by simple sequence repeats (SSRs) markers. African Journal of Biotechnology, Vol. 11 (90): 15643-15653. |
[25] | Borràs D., Plazas M., Andújar I., Gramazio P., Herraiz F. J., Prohens J. and Vilanova S. 2015. Molecular Characterization of Scarlet and Gboma Eggplants Based on Single Nucleotide Polymorphisms. BulletinUASVM Horticulture 72 (2), 448-449. DOI: 10.15835/buasvmcn-hort: 11408. |
[26] | Sawadogo B., Kiébré Z., Bationo-Kando P., Kiébré M., Traore R. E., Sawadogo N., Nanema K. Romaric, Ouedraogo M. H., Kabore B., Alleidi I. and Sawadogo M. 2018. Evaluation of Genetic Diversity of African Eggplant [Solanum aethiopicum (L.) sub sp Kumba] Using EST-SSR Molecular Markers. Int. J. Curr. Microbiol. App. Sci 7 (2): 2470-2479. |
[27] | Foulley J. L. and Ollivier L. 2006. Diversité génétique et richesse allélique: concepts et application à des races bovines. In: Treizièmes rencontres autour des recherches sur les ruminants, 6-7 décembre 2006, Paris, France, 227-230. |
[28] | Ben Naceur M., Belghouthi A., Chaabane R., El Fallah M. et Bettaeib-Ben Kaab L. 2008. Aptitude des marqueurs SSR à révéler le polymorphisme chez quelques génotypes d’orge (Hordeum vulgare, L.). Annales de l’INRAT, 81: 61-75. |
[29] | Ghosh, B. K., Mandal, A., Datta, A. K., Das, D. 2014. RAPD analysis in Andrographis paniculata (Burm. F.) ness plant types. Int. J. Res. Ayurveda Pharm. 5 (1), 84–88. |
[30] | Zhu X. C., Wu H. W., Raman H. and Lemerle D. 2012. Stanton R. and Burrows G. E., Evaluation of simple sequence repeat (SSR) markers from Solanum crop species for Solanum elaeagnifolium. Weed Research, 7p. |
[31] | Bationo-Kando P., Nanema K. R., Kiébre Z., Sawadogo B., Kiébre M., Nébie B., Sawadogo N., Traoré R. E., Sawadogo M., and Zongo J. D. 2015. Genetic diversity of cultivars of Kumba group (Solanum aethiopicum) assessed by EST-SSRS. International Journal of Development Research, Vol. 5, (10): 5686-5691. |
[32] | Ouédraogo M. H., 2016. Etude De La Diversité Génétique Des Gombos [Abelmoschus Esculentus (L.) Moench] Cultivés Au Burkina Faso. Thèse Unique de Doctorat, Université Ouaga I JKZ (Burkina Faso), Pp 165. |
[33] | Kiébré M. 2018. Diversité génétique de la corète potagère (Corchorus olitorius L.) du Burkina Faso. Thèse de doctorat, Université Ouaga I Pr JKZ., Burkina Faso. 120p. |
[34] | Wright S., 1978. Evolution and the Genetics of Population, Variability Within and Among Natural Populations. The University of Chicago Press, Chicago. |
[35] | Hartl D. L. and Clark A. G. 1997. Principles of Population Genetics, 3nd edn. Sinauer Associates, Inc, Sunderland, MA. |
APA Style
Kabore Boukare, Sawadogo Boureima, Kiebre Mariam, Tiama Djakaridia, Kiebre Zakaria, et al. (2019). Genetic Diversity of a Collection of Solanum macrocarpon from Burkina Faso Revealed by Microsatellite Markers. International Journal of Genetics and Genomics, 7(2), 27-33. https://doi.org/10.11648/j.ijgg.20190702.12
ACS Style
Kabore Boukare; Sawadogo Boureima; Kiebre Mariam; Tiama Djakaridia; Kiebre Zakaria, et al. Genetic Diversity of a Collection of Solanum macrocarpon from Burkina Faso Revealed by Microsatellite Markers. Int. J. Genet. Genomics 2019, 7(2), 27-33. doi: 10.11648/j.ijgg.20190702.12
AMA Style
Kabore Boukare, Sawadogo Boureima, Kiebre Mariam, Tiama Djakaridia, Kiebre Zakaria, et al. Genetic Diversity of a Collection of Solanum macrocarpon from Burkina Faso Revealed by Microsatellite Markers. Int J Genet Genomics. 2019;7(2):27-33. doi: 10.11648/j.ijgg.20190702.12
@article{10.11648/j.ijgg.20190702.12, author = {Kabore Boukare and Sawadogo Boureima and Kiebre Mariam and Tiama Djakaridia and Kiebre Zakaria and Traore Renan Ernest and Sawadogo Mahamadou and Bationo-Kando Pauline}, title = {Genetic Diversity of a Collection of Solanum macrocarpon from Burkina Faso Revealed by Microsatellite Markers}, journal = {International Journal of Genetics and Genomics}, volume = {7}, number = {2}, pages = {27-33}, doi = {10.11648/j.ijgg.20190702.12}, url = {https://doi.org/10.11648/j.ijgg.20190702.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijgg.20190702.12}, abstract = {Solanum macrocarpon is an important vegetable native to Africa, with leaves and fruits. It is a potential source of income and nutrients that contribute to the nutritional balance of the local population's food intake. However, S. macrocarpon did not attract the interest of researchers in relation to other Solanum species. Indeed, knowledge of the genetic diversity of S. macrocarpon (Gboma Eggplant) in Africa is limited. Although agronomic variations and relationships generally reveal important traits of interest to breeders. This study attempts to estimate the genetic diversity of a collection of S. macrocarpon (32 accessions) from Burkina Faso using SSR markers. The results show that eleven (11) of the 22 SSR markers tested were informative for phylogenetic analysis and could serve as a perfect reference for diversity studies. The 11 polymorphic SSR primers selected amplified 22 alleles with an average of 2 per primer. The polymorphism information content (PIC) varied from 0.212 for emg01B17 to 0.437 for emd15D09. The genetic distances between the accessions studied varied from 0 to 0.68 and made it possible to distinguish three genetic groups. The expected Nei (He) heterozygosity for the genetic group ranged from 0.140 for group III to 0.261 for group I. The eleven pairs of SSR markers sufficiently discriminated against the accessions of S. macrocarpon. The results of this study will be useful for the conservation and genetic improvement of the S. macrocarpon species in Burkina Faso.}, year = {2019} }
TY - JOUR T1 - Genetic Diversity of a Collection of Solanum macrocarpon from Burkina Faso Revealed by Microsatellite Markers AU - Kabore Boukare AU - Sawadogo Boureima AU - Kiebre Mariam AU - Tiama Djakaridia AU - Kiebre Zakaria AU - Traore Renan Ernest AU - Sawadogo Mahamadou AU - Bationo-Kando Pauline Y1 - 2019/06/27 PY - 2019 N1 - https://doi.org/10.11648/j.ijgg.20190702.12 DO - 10.11648/j.ijgg.20190702.12 T2 - International Journal of Genetics and Genomics JF - International Journal of Genetics and Genomics JO - International Journal of Genetics and Genomics SP - 27 EP - 33 PB - Science Publishing Group SN - 2376-7359 UR - https://doi.org/10.11648/j.ijgg.20190702.12 AB - Solanum macrocarpon is an important vegetable native to Africa, with leaves and fruits. It is a potential source of income and nutrients that contribute to the nutritional balance of the local population's food intake. However, S. macrocarpon did not attract the interest of researchers in relation to other Solanum species. Indeed, knowledge of the genetic diversity of S. macrocarpon (Gboma Eggplant) in Africa is limited. Although agronomic variations and relationships generally reveal important traits of interest to breeders. This study attempts to estimate the genetic diversity of a collection of S. macrocarpon (32 accessions) from Burkina Faso using SSR markers. The results show that eleven (11) of the 22 SSR markers tested were informative for phylogenetic analysis and could serve as a perfect reference for diversity studies. The 11 polymorphic SSR primers selected amplified 22 alleles with an average of 2 per primer. The polymorphism information content (PIC) varied from 0.212 for emg01B17 to 0.437 for emd15D09. The genetic distances between the accessions studied varied from 0 to 0.68 and made it possible to distinguish three genetic groups. The expected Nei (He) heterozygosity for the genetic group ranged from 0.140 for group III to 0.261 for group I. The eleven pairs of SSR markers sufficiently discriminated against the accessions of S. macrocarpon. The results of this study will be useful for the conservation and genetic improvement of the S. macrocarpon species in Burkina Faso. VL - 7 IS - 2 ER -