Understanding population dynamics involves key variables like growth type and body condition, the latter indicating energy acquisition, foraging behaviour, and prey availability, factors influencing species growth, reproduction, fitness, and survival in their habitat. Therefore, using accurate fish condition indices is essential. This study examined the length-weight relationships of 1010 cyprinodontiform individuals from 12 species of non-annual nothobranchiids in southern Cameroon rainforest streams and their well-being using Fulton (Kc), allometric (Ka), and relative weight (Kn) condition factors. Species differed significantly in length (F = 56.79, df = 11, p < 0.00) and weight (F = 46.66, df = 11, p < 0.00). Findings showed allometric growth patterns (p < 0.001 and R² ranging from 0.808 to 0.965); three species exhibited positive allometric growth (b > 3) and tended to be thicker, while the other species had negative allometric growth (b < 3) and tended to be thinner. Nothobranchiid growth pattern does not follow the cube law, with mean Kc values consistently below 1.0, a range proposed to be that of this fish family and not necessarily indicating a poor fish condition. Mean Ka values indicated varying feeding intensities among species, ranging from 0.29 ± 0.01 to 7.63 ± 0.21, and influenced by b-values. Mean Kn values were always greater than 1.0 across all nothobranchiids, not differing among them and reflecting good growth conditions. The study provides first insights into the growth patterns and health of the nothobranchiids within their unique ecosystem, highlighting the advantage of using multiple condition factors to describe species' physiological and ecological well-being and offering essential perspectives for sustainable management and biodiversity conservation efforts.
Published in | International Journal of Natural Resource Ecology and Management (Volume 10, Issue 2) |
DOI | 10.11648/j.ijnrem.20251002.18 |
Page(s) | 143-154 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Allometric Growth, Aphyosemion, Biodiversity Sustainable Management, Condition Factors, Length-weight Relationship, Cameroon
Genus | Sub-genus | Species |
---|---|---|
Aphyosemion | Aphyosemion Myers, 1924 | Aphyosemion sp. |
Chromaphyosemion Radda, 1971 | A. loennbergii (Boulenger, 1903) | |
A. omega (Sonnenberg, 2007) | ||
A. riggenbachi (Ahl, 1924) | ||
Kathetys Huber, 1977 | A. exiguum (Boulenger, 1911) | |
Mesoaphyosemion Radda, 1977 | A. amoenum Radda et Pürzl, 1976 | |
A. obscurum (Ahl, 1924) | ||
A. cameronense (Boulenger, 1903) | ||
A. raddai Scheel, 1975 | ||
Raddaella Huber, 1978 | A. batesii (Boulenger, 1911) | |
Scheelsemion Huber, 2013 | A. ahli Myers, 1933 | |
Epiplatys | Epiplatys infrafasciatus |
Species | n | Total length (mm) | Total weight (mg) | Length-weight parameters | Growth behavior | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Range | Mean TL ± SE | Range | Mean TW ± SE | a | b | R² | CI (b) | p regression | |||
Aphyosemion sp. | 18 | 19‒40 | 31.39±1.37 | 80‒600 | 251.11±33.67 | 0.0214 | 2.6903 | 0.8879 | 2.0‒3.15 | < 0.001 | A- |
Aphyosemion loennbergii | 266 | 16‒48 | 30.98±0.37 | 44‒700 | 260.43±8.4 | 0.0206 | 2.7244 | 0.9125 | 2.58‒2.86 | < 0.001 | A- |
Aphyosemion omega | 85 | 17‒39 | 26.9±0.5 | 43‒657 | 186.9±10.54 | 0.0199 | 2.7525 | 0.837 | 2.46‒3.03 | < 0.001 | A- |
Aphyosemion riggenbachi | 18 | 19‒40 | 29.11±1.3 | 73‒487 | 218.72±29.8 | 0.0124 | 2.8692 | 0.8665 | 1.99‒3.45 | < 0.001 | A- |
Aphyosemion exiguum | 100 | 17‒36 | 24.67±0.39 | 39‒500 | 147.68±8.17 | 0.0053 | 3.1603 | 0.8393 | 2.89‒3.41 | < 0.001 | A+ |
Aphyosemion amoenum | 71 | 21‒45 | 32.51±0.8 | 51‒711 | 277.82±20.45 | 0.0154 | 2.7753 | 0.808 | 2.49‒3.06 | < 0.001 | A- |
Aphyosemion obscurum | 46 | 22‒47 | 33.74±0.83 | 66‒804 | 317.7±24.17 | 0.0028 | 3.2772 | 0.9302 | 2.95‒3.58 | < 0.001 | A+ |
Aphyosemion cameronense | 133 | 19‒47 | 33.6±0.56 | 43‒656 | 312.27±13.53 | 0.019 | 2.7392 | 0.889 | 2.53‒2.94 | < 0.001 | A- |
Aphyosemion raddai | 83 | 22‒50 | 33.84±0.8 | 87‒800 | 338.9±21.3 | 0.0139 | 2.8357 | 0.9403 | 2.68‒2.99 | < 0.001 | A- |
Aphyosemion batesii | 61 | 27‒70 | 47.56±1.42 | 92‒1826 | 742.9±50.38 | 0.0744 | 2.3589 | 0.8687 | 2.06‒2.62 | < 0.001 | A- |
Aphyosemion ahli | 86 | 17‒45 | 30.7±0.71 | 46‒713 | 271.1±17.4 | 0.0219 | 2.7182 | 0.9145 | 2.53‒2.91 | < 0.001 | A- |
Epiplatys infrafasciatus | 43 | 23‒88 | 44.88±1.91 | 99‒4846 | 837.67±122.74 | 0.0054 | 3.0805 | 0.9655 | 2.87‒3.23 | < 0.001 | A+ |
Species | Fulton Kc | Allometric Ka | Relative weight Kn | |||
---|---|---|---|---|---|---|
Range | mean Kc ± SE | Range | mean Ka ± SE | Range | mean Kn ± SE | |
Aphyosemion sp. | 0.50‒1.20 | 0.75±0.04 | 1.46‒2.94 | 2.17±0.10 | 0.68‒1.37 | 1.02±0.04 |
Aphyosemion loennbergii | 0.45‒1.76 | 0.81±0.01 | 1.21‒4.27 | 2.09±0.02 | 0.59‒2.07 | 1.01±0.01 |
Aphyosemion omega | 0.46‒1.32 | 0.90±0.02 | 1.02‒2.88 | 2.04±0.04 | 0.51‒1.44 | 1.02±0.02 |
Aphyosemion riggenbachi | 0.54‒1.20 | 0.81±0.04 | 0.88‒1.76 | 1.26±0.06 | 0.71‒1.42 | 1.02±0.05 |
Aphyosemion exiguum | 0.37‒1.49 | 0.91±0.02 | 0.22‒0.94 | 0.54±0.01 | 0.42‒1.78 | 1.02±0.02 |
Aphyosemion amoenum | 0.21‒1.06 | 0.73±0.02 | 0.45‒2.11 | 1.59±0.04 | 0.30‒1.37 | 1.04±0.03 |
Aphyosemion obscurum | 0.44‒1.08 | 0.75±0.02 | 0.18‒0.39 | 0.29±0.01 | 0.65‒1.38 | 1.02±0.02 |
Aphyosemion cameronense | 0.35‒1.37 | 0.77±0.01 | 0.94‒3.03 | 1.90±0.03 | 0.50‒1.62 | 1.02±0.02 |
Aphyosemion raddai | 0.47‒1.07 | 0.79±0.01 | 0.84‒1.89 | 1.41±0.02 | 0.6‒1.36 | 1.01±0.01 |
Aphyosemion batesii | 0.31‒1.23 | 0.66±0.02 | 2.79‒13.12 | 7.63±0.21 | 0.38‒1.76 | 1.03±0.03 |
Aphyosemion ahli | 0.44‒2.16 | 0.85±0.02 | 1.15‒5.09 | 2.22±0.05 | 0.52‒2.33 | 1.02±0.02 |
Epiplatys infrafasciatus | 0.45‒1.03 | 0.74±0.02 | 0.34‒0.78 | 0.54±0.01 | 0.64‒1.42 | 1.01±0.02 |
Ka | Allometric Condition Factor |
Kc | Fulton’s Condition Factor |
Kn | Relative Weight Condition Factor |
LWR | Length-weight Relationship |
[1] | Tsikliras, A. C., Dinouli, A., Tsiros, V.-Z., Tsalkou, E. The Mediterranean and Black Sea fisheries at risk from overexploitation. PLoS ONE. 2015, 10, e0121188. |
[2] | Food and Agriculture Organization (FAO). Fisheries management. The ecosystem approach to fisheries. FAO Technical Guidelines for Responsible Fisheries. Rome: Italy; 2003, No. 4, Suppl. 2. |
[3] | Zargar, U. R., Yousuf, A. R., Mushtaq, B., Jan, D. Length–weight relationship of the Crucian carp, Carassius carassius in relation to water quality, sex and season in some lentic water bodies of Kashmir Himalayas. Turkish Journal of Fisheries and Aquatic Sciences. 2012, 12(3), 683-689. |
[4] | Morato, T., Afonso, P., Loirinho, P., Barreiros, J. P., Sanstos, R. S., Nash, R. D. M. Length-weight relationships for 21 costal fish species of the Azores. Northeastern Atlantic. Fisheries Research. 2001, 50(3), 297-302. |
[5] | Kuriakose, S. Estimation of length weight relationship in fishes. Summer school on advanced methods for fish stock assessment and fisheries management. Reprinted from the CMFRI, FRAD. Training Manual on Fish Stock Assessment and Management. 2014, pp. 1-150. |
[6] | Bagenal, T. B., Tesch, F. W. Age and Growth. In Methods for Assessment of Fish Production in Freshwaters, Bagenal, T. Ed., Blackwell Scientific Publications, Oxford; 1978, pp. 101-136. |
[7] | Jisr, N., Younes, G., Sukhn, C., Mohammad, H., El-Dakdouki, M. H. Length-weight relationships and relative condition factor of fish inhabiting the marine area of the Eastern Mediterranean city, Tripoli-Lebanon. Egyptian Journal of Aquatic Research. 2018, 44(4), 299-305. |
[8] | Mehanna, S. F., Farouk, A. E. Length-weight relationship of 60 fish species from the Eastern Mediterranean Sea, Egypt (GFCM-GSA 26). Frontiers in Marine Science. 2021, 8, 625422. |
[9] | Stevenson, R. D., Woods, W. A. Condition indices for conservation: new uses for evolving tools. Integrative and Comparative Biology. 2006, 46(6), 1169-1190. |
[10] | Datta, S. N., Kaur V. I., Dhawan A., Jassal, G. Estimation of length-weight relationship and condition factor of spotted snakehead Channa punctata (Bloch) under different feeding regimes. SpringerPlus. 2013, 2: 436. |
[11] | Perdana, A. W., Batubara, A. S., Nur, F. M. LWRs, condition factors and isopod parasites infection of the sumbo fish Selar crumenophthalmus (Pisces: Carangidae) in Lampulo fishing port, Banda Aceh, Aceh Province, Indonesia. IOP Conference Series: Earth and Environtal Science. 2019, 348(1): 012017. |
[12] | Le Cren, E. D. The length-weight relationship and seasonal cycle in gonad weight and condition in perch (Perca fluviatilis). Journal of Animal Ecology. 1951, 20(2), 201-219. |
[13] | Schneider, J. C., Laarman, P. W., Gowing, H. Length-weight relationships. Chapter 17. In Manual of Fisheries Survey Methods II: With Periodic Updates, Michigan Department of Natural Resources, Fisheries Special Report 25, Schneider, J. C. Ed., Ann Arbor; 2000, 25(1), pp. 1-18. |
[14] | Froese, R. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal of Applied Ichthyology. 2006, 22(4), 241-253. |
[15] | Guidelli, G., Tavechio, W. L. G., Takemoto, R. M., Pavanelli, G. C. Relative condition factor and parasitism in anostomid fishes from the floodplain of the Upper Parana River, Brazil. Veterinary Parasitology. 2011, 177(1-2), 145-151. |
[16] | Lambert, Y., Dutil, J. D. Can simple condition indices be used to monitor and quantify seasonal changes in the energy reserves of cod (Gadus morhua)? Canadian Journal of Fisheries and Aquatic Sciences. 1997, 54(S1), 104-112. |
[17] | Imam, T. S., Bala, U., Balarabe, M. L., Oyeyi, T. I. Length-weight relationship and condition factor of four fish species from Wasai Reservoir in Kano, Nigeria. African Journal of General Agriculture. 2010, 6(3), 125-130. |
[18] |
Green, A. J. Mass/length residuals: measures of body condition or generators of spurious results. Ecology. 2001, 82(5), 1473-1483.
https://doi.org/10.1890/0012-9658(2001)082[1473:MLRMOB]2.0.CO;2 |
[19] | Brosset, P., Fromentin, J.-M., Ménard, F., Pernet, F., Bourdeix, J.-H., Bigot, J.-L., Van Beveren, E., Pérez Roda, M. A., Choy, S., Saraux, C. Measurement and analysis of small pelagic fish condition: A suitable method for rapid evaluation in the field. Journal of Experimental Marine Biology and Ecology. 2015, 462: 90-97. |
[20] | Okgerman, H. Seasonal variations in the length-weight relationship and condition factor of rudd (Scardinius erythrophthalmus L.) in Sapanca Lake. International Journal of Zoological Research. 2005, 1(1), 6-10. |
[21] | Bervoets, L., Blust, R. Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: relationship with fish condition factor. Environmental Pollution. 2003, 126(1), 9-19. |
[22] |
Cone, R. S. The need to reconsider the use of condition indices in fishery science. Transactions of the American Fisheries Society, 1989, 118(5), 510-514.
https://doi.org/10.1577/1548-8659(1989)118%3C0511:TNTRTU%3E2.3.CO;2 |
[23] | Hossain, M. Y., Jasmine, S., Ibrahim, A. H. M., Ahmed, Z. F., Rahman, M. M., Ohtomi J. Length-weight and length-length relationships of 10 small fish species from the Ganges, Bangladesh. Journal of Applied Ichthyology. 2009, 25(1), 117-119. |
[24] | Kulbicki, M., Guillemot, N., Amand, M. A general approach to length–weight relationships for New Caledonian lagoon fishes. Cybium. 2005, 29(3), 235-252. |
[25] | Juffe-Bignoli, D., Darwall, W. R. T. Évaluation de la valeur socioéconomique des espèces d'eau douce en Afrique du Nord. Gland: World Conservation Union (IUCN); 2012, pp. 1-92. |
[26] | The WorldFish Center. Africa’s age of aquarium: farming ornamental fish in the rainforests of West Africa to improve livelihoods of the poor. WorldFish Center. Penang; 2007. |
[27] | Di Cicco, E., Tozzini, E. T., Rossi, G., Cellerino, A. The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Experimental Gerontology, 2010, 46(4), 249-256. |
[28] | Auer, S. K., Lopez-Sepulcre, A., Heatherly, T., Kohler, T. J., Bassar, R. D., Thomas, S. A., Reznick, D. N. Life histories have a history: effects of past and present conditions on adult somatic growth rates in wild Trinidadian guppies: Adult growth rates reflect individual history. Journal of Animal Ecology. 2012, 81(4), 818-826. |
[29] | Bassar, R. D., Lopez-Sepulcre, A., Reznick, D. N., Travis, J. Experimental evidence for density-dependent regulation and selection on Trinidadian guppy life histories. The American Naturalist. 2013, 181(1), 25-38. |
[30] | Dargent, F., Torres-Dowdall, J., Scott, M. E., Ramnarine, I., Fussmann, G. F. Can mixed-species groups reduce individual parasite load? A field test with two closely related poeciliid fishes (Poecilia reticulata and Poecilia picta). Plos One. 2013, 8(2), 1-7. |
[31] |
Fricke, R., Eschmeyer, W. N., Van der Laan, R. Eschmeyer's Catalog of Fishes: genera, species, references. Available from:
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (assessed 02 January 2025). |
[32] | King, R. P. Length-weight relationships and related statistics of 73 populations of fish occurring in inland waters of Nigeria. Naga, ICLARM Q. 1996, 19(3), 49-52. |
[33] |
Froese, R., Pauly, D. FishBase. Available from:
www.fishbase.org (assessed 14 January 2025). |
[34] | Akpan, B. E., King, R. P., Goodluck, E. J. Diet of an African killifish Aphyosemion gardneri (Aplocheilidae) in a Nigerian rainforest pond. Acta Zoologica Sinica. 2006, 52(4), 669-675. |
[35] | Amiet, J. L. Fauna of Cameroon - The genus Aphyosemion Myers (Pisces, Teleostei, Cyprinodontiformes), vol 2. Sciences Naturelles: Compiègne, France; 1987. |
[36] | Sonnenberg, R. Description of three new species of the genus Chromaphysemion Radda, 1971 (Cyprinodontiformes: Nothobranchiidae) from the coastal plains of Cameroon with a preliminary review of the Chromaphyosemion splendopleure complex. Zootaxa. 2007, 1591(1), 1-38. |
[37] | Van der Zee, J. R., Woeltjes, T., Wildekamp, R. H. Aplocheilidae Bleeker, 1860. In The Fresh and Brackish Water fishes of Lower Guinea, West Central Africa, Stiassny, M. L. J., Teugels, G. G., Hopkins, C. D., Ed., IRD, Paris, France; 2007, pp. 80-240. |
[38] | Huber, J. H. Reappraisal of the Phylogeny of the African genus Aphyosemion (Cyprinodontiformes) focused on external characters, in line with molecular data, with new and redefined subgenera. Killi-Data Series. 2013, 2013: 4-20. |
[39] | Pauly, D. Fish population dynamics in tropical waters: a manual for use with programmable calculators. International Centre for Living Aquatic Resources Management, Studies and Reviews 8, Manila; 1984. |
[40] | Yilmaz, S., Yazıcıoğlu, O., Erbasaran, M., Esen, S., Zengin, M., Polat, N. Length-weight relationship and relative condition factor of white bream, Blicca bjoerkna (L., 1758), from Lake Ladik, Turkey. Journal of the Black Sea/Mediterranean Environment. 2012, 18(3), 380-387. |
[41] | Ragheb, E. Length-weight relationship and well-being factors of 33 fish species caught by gillnets from the Egyptian Mediterranean waters off Alexandria. Egyptian Journal of Aquatic Research. 2023, 49(3), 361-367. |
[42] | Omogoriola, H. O., Willams, A. B., Adegbile, O. M., Olakolu, F. C., Ukaonu, S. U., Myade, E. F. Length-weight relationships, condition factor (K) and relative condition factor (Kn) of Sparids, Dentex congoensis (Maul, 1954) and Dentex angolensis (Maul and Poll, 1953), in Nigerian coastal water. International Journal of Biological and Chemical Sciences. 2011, 5(2), 739-747. |
[43] | Mensah, S. A. Weight-length models and relative condition factors of nine freshwater fish species from the Yapei Stretch of the White Volta, Ghana. Elixir. Applied Zoology. 2015, 79, 30427-30431. |
[44] | Ozaydin, O., Uçkun, D., Akalin, S., Leblebici, S., Tosunoğlu, Z. Length-weight relationships of fishes captured from Izmir Bay, Central Aegean Sea. Journal of Applied Ichthyology. 2007, 23(6), 695-696. |
[45] | Cherif, M., Zarrad, R., Gharbi, H., Missaoui, H., Jarboui, O. Length-weight relationships for 11 fish species from the Gulf of Tunis (SW Mediterranean Sea, Tunisia). Pan-American Journal of Aquatic Sciences. 2008, 3(1), 1-5. |
[46] | Borges, T. C., Olim, S., Erzini, K. Weight-length relationships for fish species discarded in commercial fisheries of the Algarve (Southern Portugal). Journal of Applied Ichthyology. 2003, 19(6), 394-396. |
[47] | Andreu-Soler, A., Oliva-Paterna, F. J., Torralva, M. A review of length-weight relationships of fish from the Segura River basin (SE. Iberian Peninsula). Journal of Applied Ichthyology. 2006, 22(4), 295-296. |
[48] | Veiga, P., Machado, D., Almeida, C., Bentes, L., Monteiro, P., Oliveira, F., Ruano, M., Erzini, K., Gonçalves, J. M. S. Weight-length relationships for 54 species of the Arade Estuary, Southern Portugal. Journal of Applied Ichthyology. 2009, 25(4), 493-496. |
[49] | Anzueto-Calvo, M. J., Velázquez-Velazquez, E., Ruiz-Campos, G., Cruz Maza, B. G., Domínguez-Cisneros S. E. Evaluation of somatic indexes in the endangered and endemic killifish Tlaloc hildebrandi (Cyprinodontiformes: profundulidae). Neotropical Biodiversity. 2022, 8(1), 267-270. |
[50] | Zar, J. H. Biostatistical analysis, 3rd Ed. Prentice Hall, Upper Saddle River; 1999. |
[51] | Sokal, R. R., Rohlf, F. J. Biometry: the principles and practice of statistics in biological research. Freeman, W. H. and Co. ED., New York; 1995. |
[52] | Messu Mandeng, F. D., Bilong Bilong, C . F., Agnèse, J. F. Species diversity and distribution pattern determinants of African rivulines (Cyprinodontiformes: Nothobranchiidae) in rainforest streams of southern Cameroon. African Zoology. 2024, 59(1): 10-25. |
[53] | Gayanilo, F. C., Pauly, D. FAO-ICLARM stock assessment tools (FiSAT): references manual. FAO Computerized information series, vol. 8; 1997, pp. 1-862. |
[54] | Abowei, J. F. N. The condition factor, length-weight relationship, and abundance of Ilisha africana (Block, 1795) from Nkoro River Niger Delta, Nigeria. Advance Journal of Food Science and Technology. 2010, 2(1), 6-11. |
[55] | Mommsen, T. P. Growth and metabolism. In The Physiology of Fishes. Evans, D. H. E d., CRC Press, New York; 1998, pp. 65-98. |
[56] | Abujam, S. K. S., Biswas, S. P. Length-weight relationship and condition factor of spiny eel Macrognathus aral from upper Assam, India. International Journal of Current Life Sciences. 2014, 4(3), 605-611. |
[57] | Abujam, S. K. S., Biswas, S. P. Length-weight relationship of spiny eel Macrognathus pancalus (Hamilton-Buchanan) from Upper Assam, India. Journal of Aquaculture Engineering and Fisheries Research. 2016, 2(2), 50-60. |
[58] | Ragheb, E., Akel, E. S. H. K. Some biological aspects and fisheries assessment of Diplodus vulgaris (Geoffrey Saint-Hilaire, 1817) (Teleostei: Sparidae) caught by gillnets (Egyptian Mediterranean waters, Alexandria). Egyptian Journal of Aquatic Research. 2022, 48(4), 425-432. |
[59] | Olaosebikan, B. B., Lamai, S. L., Musschoot, T. Population dynamics, life history traits of and habitat use by two sympatric nothobranchiid fishes in a tropical stream, Kainji Lake Basin, Nigeria. African Journal of Aquatic Science. 2009, 34(1) 45-56. |
[60] | Peig, J. Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos. 2009, 118(12), 1883-1891. |
[61] | Labocha, M. K., Schutz, H., Hayes, J. P. Which body condition index is best? Oikos. 2014, 123(1), 111-119. |
[62] | Ricker, W. E. Computation and interpretation of biological statistics for fish populations. Bulletin of the Fisheries Research Board of Canada. 1975, 191: 1-382. |
[63] |
Bister, T. J., Willis, D. W., Brown, M. L., Jordan, S., Neumann, R. M., Quist, M. C., Guy, C. S. Proposed standard weight (Ws) equations and standard length categories for 18 warm water non game and riverine fish species. North American Journal of Fisheries Management. 2000, 20(2), 570-574.
https://doi.org/10.1577/1548-8675(2000)020%3C0570:PSWWSE%3E2.3.CO;2 |
[64] | Kimmerer, W., Avent S. R., Bollens, S. M., Feyrer Grimaldo, L. F., Moyle, P. B., Nobriga, M, Visintainer, T. Variability in length-weight relationships used to estimate biomass of estuarine fish from survey data. Transactions of the American Fisheries Society. 2005, 134(2), 481-495. |
[65] | Ighwela, K. A., Ahmed, A. B., Abol-Munafi, A. B. Condition factor as an indicator of growth and feeding intensity of Nile tilapia fingerlings (Oreochromis niloticus) feed on different levels of maltose. American-Eurasian Journal of Agricultural & Environmental. 2011, 11(4), 559-563. |
[66] | Fafioye, O., Ayodele, O. Length-Weight Relationship and Condition Factor of Four Commercial Fish Species of Oyan Lake, Nigeria. Examines in Marine Biology & Oceanography. 2018, 2(4), 227-230. |
[67] | Muchlisin, Z. A., Fransiska, V., Muhammadar, A. A., Fauzi, M., Batubara, A. S. Length-weight relationships and condition factors of the three dominant species of marine fishes caught by traditional beach trawl in Ulelhee Bay, Banda Aceh City, Indonesia. Croatian Journal of Fisheries. 2017, 75(4), 104-112. |
[68] | Anderson, R. O., Newmann, R. M. Length, weight and associated structural indices. In Fisheries Techniques. Murphy, B. R., Willis, D. R. Ed., American Fisheries Society, Bethesda; 1996, pp. 447-481. |
[69] | Muchlisin, Z. A., Musman, M., Siti-Azizah, M. N. Length-weight relationships and condition factors of two threatened fishes, Rasbora tawarensis and Poropuntius tawarensis, endemic to Lake Laut Tawar, Aceh Province, Indonesia. Journal of Applied Ichthyology. 2010, 26(6), 949-953. |
[70] | Peig, J., Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Functional Ecology. 2010, 24(6), 1323-1332. |
[71] | Blackwell, B. G., Brown, M. L., Willis, D. W., Relative Weight (Wr) Status and Current Use in Fisheries Assessment and Management. Reviews in Fisheries Science. 2000, 8(1), 1-44. |
[72] | Neumann, R. M., Guy, C. S., Willis, D. W. Length, weight, and associated indices. In Fisheries Techniques. Zale, A. V., Parrish, D. L., Sutton, T. M. Ed., American Fisheries Society, Bethesda; 2012, pp. 637-676. |
APA Style
Messu-Mandeng, F. D., Bilong-Bilong, C. F., Agnèse, J. (2025). Non-annual Nothobranchiid (Cyprinodontiformes) Growth Type and Health in Southern Cameroon Rainforest Streams: Perspectives from Condition Indices. International Journal of Natural Resource Ecology and Management, 10(2), 143-154. https://doi.org/10.11648/j.ijnrem.20251002.18
ACS Style
Messu-Mandeng, F. D.; Bilong-Bilong, C. F.; Agnèse, J. Non-annual Nothobranchiid (Cyprinodontiformes) Growth Type and Health in Southern Cameroon Rainforest Streams: Perspectives from Condition Indices. Int. J. Nat. Resour. Ecol. Manag. 2025, 10(2), 143-154. doi: 10.11648/j.ijnrem.20251002.18
AMA Style
Messu-Mandeng FD, Bilong-Bilong CF, Agnèse J. Non-annual Nothobranchiid (Cyprinodontiformes) Growth Type and Health in Southern Cameroon Rainforest Streams: Perspectives from Condition Indices. Int J Nat Resour Ecol Manag. 2025;10(2):143-154. doi: 10.11648/j.ijnrem.20251002.18
@article{10.11648/j.ijnrem.20251002.18, author = {Françoise Danielle Messu-Mandeng and Charles Felix Bilong-Bilong and Jean-François Agnèse}, title = {Non-annual Nothobranchiid (Cyprinodontiformes) Growth Type and Health in Southern Cameroon Rainforest Streams: Perspectives from Condition Indices }, journal = {International Journal of Natural Resource Ecology and Management}, volume = {10}, number = {2}, pages = {143-154}, doi = {10.11648/j.ijnrem.20251002.18}, url = {https://doi.org/10.11648/j.ijnrem.20251002.18}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnrem.20251002.18}, abstract = {Understanding population dynamics involves key variables like growth type and body condition, the latter indicating energy acquisition, foraging behaviour, and prey availability, factors influencing species growth, reproduction, fitness, and survival in their habitat. Therefore, using accurate fish condition indices is essential. This study examined the length-weight relationships of 1010 cyprinodontiform individuals from 12 species of non-annual nothobranchiids in southern Cameroon rainforest streams and their well-being using Fulton (Kc), allometric (Ka), and relative weight (Kn) condition factors. Species differed significantly in length (F = 56.79, df = 11, p F = 46.66, df = 11, p p R² ranging from 0.808 to 0.965); three species exhibited positive allometric growth (b > 3) and tended to be thicker, while the other species had negative allometric growth (b Kc values consistently below 1.0, a range proposed to be that of this fish family and not necessarily indicating a poor fish condition. Mean Ka values indicated varying feeding intensities among species, ranging from 0.29 ± 0.01 to 7.63 ± 0.21, and influenced by b-values. Mean Kn values were always greater than 1.0 across all nothobranchiids, not differing among them and reflecting good growth conditions. The study provides first insights into the growth patterns and health of the nothobranchiids within their unique ecosystem, highlighting the advantage of using multiple condition factors to describe species' physiological and ecological well-being and offering essential perspectives for sustainable management and biodiversity conservation efforts.}, year = {2025} }
TY - JOUR T1 - Non-annual Nothobranchiid (Cyprinodontiformes) Growth Type and Health in Southern Cameroon Rainforest Streams: Perspectives from Condition Indices AU - Françoise Danielle Messu-Mandeng AU - Charles Felix Bilong-Bilong AU - Jean-François Agnèse Y1 - 2025/06/23 PY - 2025 N1 - https://doi.org/10.11648/j.ijnrem.20251002.18 DO - 10.11648/j.ijnrem.20251002.18 T2 - International Journal of Natural Resource Ecology and Management JF - International Journal of Natural Resource Ecology and Management JO - International Journal of Natural Resource Ecology and Management SP - 143 EP - 154 PB - Science Publishing Group SN - 2575-3061 UR - https://doi.org/10.11648/j.ijnrem.20251002.18 AB - Understanding population dynamics involves key variables like growth type and body condition, the latter indicating energy acquisition, foraging behaviour, and prey availability, factors influencing species growth, reproduction, fitness, and survival in their habitat. Therefore, using accurate fish condition indices is essential. This study examined the length-weight relationships of 1010 cyprinodontiform individuals from 12 species of non-annual nothobranchiids in southern Cameroon rainforest streams and their well-being using Fulton (Kc), allometric (Ka), and relative weight (Kn) condition factors. Species differed significantly in length (F = 56.79, df = 11, p F = 46.66, df = 11, p p R² ranging from 0.808 to 0.965); three species exhibited positive allometric growth (b > 3) and tended to be thicker, while the other species had negative allometric growth (b Kc values consistently below 1.0, a range proposed to be that of this fish family and not necessarily indicating a poor fish condition. Mean Ka values indicated varying feeding intensities among species, ranging from 0.29 ± 0.01 to 7.63 ± 0.21, and influenced by b-values. Mean Kn values were always greater than 1.0 across all nothobranchiids, not differing among them and reflecting good growth conditions. The study provides first insights into the growth patterns and health of the nothobranchiids within their unique ecosystem, highlighting the advantage of using multiple condition factors to describe species' physiological and ecological well-being and offering essential perspectives for sustainable management and biodiversity conservation efforts. VL - 10 IS - 2 ER -