| Peer-Reviewed

Study on the Concentration of Moment at Slab-column Joints Due to Presence of Shear Walls in Different Positions

Received: 10 September 2017     Accepted: 25 September 2017     Published: 20 October 2017
Views:       Downloads:
Abstract

A ten-storied building with shear walls in two directions with respect to the direction of lateral load acting on the building has been studied here. The finite element based software, ETABS (version 9.6) has been used for determining the moment at different area objects due to the lateral load and Simpson’s one-third rule has been used to calculate the line moment from mesh area. The study shows that, Shear Wall-1 (perpendicular to the lateral load direction) system produces more moment than the Shear Wall-2 (parallel to the load direction) system but around 45 percent of total negative or positive moment passes through column strip in SW-1 system and around 99 percent of negative or positive moment passes through the same strip in SW-2 system while rest of the moment passes through middle strip. Around 80 percent of column strip moment passes through effective strip (c+3h) in both of two systems.

Published in Journal of Civil, Construction and Environmental Engineering (Volume 2, Issue 5)
DOI 10.11648/j.jccee.20170205.13
Page(s) 140-146
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Shear Wall Systems, Lateral Load, Positive Moment, Negative Moment

References
[1] ACI Code (318-05), American concrete Institute, 1977, Standard building code Requirements for Reinforced concrete.
[2] Arthur H. Nilson, David Darwin, Charles W. Dolan, (2010), “Design of concrete Structures”, 13th edition, The McGraw-Hill companies, Inc.
[3] Bangladesh National Building Code (BNBC), (1993), First edition.
[4] E. H. Gaylord, jr, C. N. Gaylord, J. E. Stallmeyer, (2010), “Design of steel structures” 3rd edition, Tata McGraw Hill Education Private Limited, New Delhi.
[5] ETABS Nonlinear ver. 9.6, (Extended Three-dimensional Analysis of Building System), computers and structures Inc.
[6] IS 13920, (1993), Indian Standard Code of Practice for Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces, Bureau of Indian Standards, New Delhi.
[7] M. Ofelia Moroni, (2002), Concrete Shear Wall Construction, University of Chile, Santiago, Chile.
[8] Timothy P. Mccormick, P. E, (2014), Shear Walls, Project Paper, New York.
[9] Mohammad Rafiqul Islam and Tahsin Reza Hossain, (2015), Assessment on Moment Concentration at Slab-Column Joint of RC Flat Plates Due to Gravity and Lateral Loads, Thesis, Military Institute of Science and Technology (MIST), Dhaka.
[10] S. S Sastry, (2006), “Introductory Methods of Numerical Analysis”, 4th edition, Prentice Hall of India, New Delhi.
[11] Syed Noor-E-Alam, (2013), Analysis of Elastic Behavior of High-Rise Building with Column Supported Slab Along With Interior Shallow Beams, undergraduate thesis, Bangladesh University of Engineering and Technology, Bangladesh.
[12] Bothara, D. S., Varghese, V., (2012) “Dynamic analysis of special moment resisting frame Building With flat slab and grid slab”, International Journal of Engineering Research and Applications, Vol. 2, Issue 4, pp.275-280.
[13] Bhat, S. M., Shenoy, Premanad, N. A., RAO, A. U., “Earthquake behavior of building with and without shear walls”, IOSR Journal of Mechanical and Civil Engineering, PP 20-25.
[14] Climent, A. B., Sánchez, D. Z., Gil-Villaverde, J. F., (2012), “Experimental study on the effective width of flat slab structures under dynamic seismic loading”.
[15] Jadhav, M. B., Patil, G. R., (2014), “Review on steel plate shear wall for tall buildings”, International Journal of Science and Research, Volume 3 Issue 5.
[16] Harne, V. R., (2014), “Comparative study of strength of RC shear wall at different location on Multi-storied residential building”, International Journal of Civil Engineering Research, Volume 5, pp. 391-400.
[17] Han, W. S., Park, Mi. Y., Kee, H. S., (2009), “Stiffness reduction factor for flat slab structures under lateral loads”, Journal of structural engineering.
[18] Gupta, U., Ratnaparkhe, S., Gome, P., (2012), “Seismic behavior of building having flat slabs with Drops”, International Journal of Emerging Technology and Advanced Engineering, Volume 2, Issue 10.
[19] Finzel, E. S., Jeffrey, T. M., Kenneth, R. D., Enkelmann, E., (2011), “Upper plate proxies for flat-slab subduction processes in southern Alaska”, Earth and Planetary Science Letters.
[20] Mirzaei, Y., Sasani, M., (2008), “Post‐punching behavior of rc flat slabs: local failure system level progressive collapse analysis of structures”, This material is based upon work supported by the U.S. Department of Homeland Security under Award Number 2008-ST-061-ED0001.
[21] Musmar, M. A., “Analysis of shear wall with openings using solid65 element”, Jordan Journal of Civil Engineering, Volume 7, No. 2, 2013.
[22] Mohammed, Azam, S. K., Hosur, V., (2013), “Seismic performance evaluation of multistoried RC framed buildings with Shear wall”, International Journal of Scientific & Engineering Research Volume 4, Issue 1.
[23] Patil, K. S., Gore, N. G., Salunke, P. J., (2013), “Optimum design of reinforced concrete flat slab with drop Panel”, International Journal of Recent Technology and Engineering, Vol. 2.
[24] Pathan, K. M., Nakhwa, H., Choudhary, U., Yadav, N., Shaikh, k., (2013), “Effective height of Curtailed shear walls for high rise reinforced concrete buildings”, International Journal Of Engineering And Science, Vol.3, Issue 3, PP 42-44.
[25] Rahangdale, H., Satone, S. R., (2013), “Design and analysis of multistoried building with effect Of Shear Wall”, International Journal of Engineering Research and Applications, Vol. 3, pp.223-232.
[26] Rahman, V. K., Mundhada, A. R., (2013), “Comparative study of rcc and prestressed concrete flat Slabs”, International Journal of Modern Engineering Research, Vol. 3, pp- 1727-1730.
[27] Ramos, A., Lúcio, V., (2006), “Safety on punching of prestressed flat slabs”, Proceedings of the 2nd International Congress, Naples, Italy.
[28] Sable, K. S., Ghodechor, V. A., B., Kandekar, S. B., (2012), “Comparative Study of Seismic Behavior of multistory flat slab and conventional reinforced concrete framed structure”, International Journal of Computer Technology and Electronics Engineering, Volume 2, Issue 3.
[29] S. A., Bhuni, A. D., Ramjiyani, B., (2011), “Solution of shear wall location in multi-storey building”, International Journal of civil and structural Engineering, Volume 2, No 2.
[30] Sabouri J., Ziyaeifar M., (2009), “Shear walls with dispersed input energy dissipation potential”, Asian Journal of civil Engineering, VOL. 10, NO. 5, pp 593-609.
[31] Sardar, S. J., Karadi, U. N., (2013), “Effect of change in shear wall location on storey drift of multi Storey building subjected to lateral loads”, International Journal of Innovative Research in Science Engineering and Technology, Vol. 2, Issue 9.
[32] Sathawane, A. A., Deotale, R. S., (2011), “Analysis and design of flat slab and grid slab and their Cost comparison” International Journal of Engineering Research and Applications, Vol. 1 Issue 3, pp.837-848.
[33] Sumanth, Chowdary, P. V., Senthil Pandian, M., (2014), “A comparative study on RCC structure with and without Shear Wall”, International Journal for Scientific Research & Development Vol. 2, Issue 02.
[34] Galal1, K, El-Sokkary, H, (2008), “Advancement In Modeling Of Rc Shear Walls”, The 14th World Conference on Earthquake Engineering, Beijing, China.
[35] Thorat, S. R., Salunk, e P. J., (2014), “Seismic behavior of multistorey shear wall frame versus Braced Concrete Frames”, International Journal of Recent Technology and Engineering, Volume-3, Issue-1.
[36] Varma, M., Pendharkar, U., Sharma, R. K., (2012), “Experimental study to evaluate short-term Deflections for two-way RC slabs”, International Journal of civil and structural Engineering, Volume 2, No 3.
Cite This Article
  • APA Style

    Mohammad Rafiqul Islam, Abbas Ali, Mohammad Emran Tahir. (2017). Study on the Concentration of Moment at Slab-column Joints Due to Presence of Shear Walls in Different Positions. Journal of Civil, Construction and Environmental Engineering, 2(5), 140-146. https://doi.org/10.11648/j.jccee.20170205.13

    Copy | Download

    ACS Style

    Mohammad Rafiqul Islam; Abbas Ali; Mohammad Emran Tahir. Study on the Concentration of Moment at Slab-column Joints Due to Presence of Shear Walls in Different Positions. J. Civ. Constr. Environ. Eng. 2017, 2(5), 140-146. doi: 10.11648/j.jccee.20170205.13

    Copy | Download

    AMA Style

    Mohammad Rafiqul Islam, Abbas Ali, Mohammad Emran Tahir. Study on the Concentration of Moment at Slab-column Joints Due to Presence of Shear Walls in Different Positions. J Civ Constr Environ Eng. 2017;2(5):140-146. doi: 10.11648/j.jccee.20170205.13

    Copy | Download

  • @article{10.11648/j.jccee.20170205.13,
      author = {Mohammad Rafiqul Islam and Abbas Ali and Mohammad Emran Tahir},
      title = {Study on the Concentration of Moment at Slab-column Joints Due to Presence of Shear Walls in Different Positions},
      journal = {Journal of Civil, Construction and Environmental Engineering},
      volume = {2},
      number = {5},
      pages = {140-146},
      doi = {10.11648/j.jccee.20170205.13},
      url = {https://doi.org/10.11648/j.jccee.20170205.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jccee.20170205.13},
      abstract = {A ten-storied building with shear walls in two directions with respect to the direction of lateral load acting on the building has been studied here. The finite element based software, ETABS (version 9.6) has been used for determining the moment at different area objects due to the lateral load and Simpson’s one-third rule has been used to calculate the line moment from mesh area. The study shows that, Shear Wall-1 (perpendicular to the lateral load direction) system produces more moment than the Shear Wall-2 (parallel to the load direction) system but around 45 percent of total negative or positive moment passes through column strip in SW-1 system and around 99 percent of negative or positive moment passes through the same strip in SW-2 system while rest of the moment passes through middle strip. Around 80 percent of column strip moment passes through effective strip (c+3h) in both of two systems.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Study on the Concentration of Moment at Slab-column Joints Due to Presence of Shear Walls in Different Positions
    AU  - Mohammad Rafiqul Islam
    AU  - Abbas Ali
    AU  - Mohammad Emran Tahir
    Y1  - 2017/10/20
    PY  - 2017
    N1  - https://doi.org/10.11648/j.jccee.20170205.13
    DO  - 10.11648/j.jccee.20170205.13
    T2  - Journal of Civil, Construction and Environmental Engineering
    JF  - Journal of Civil, Construction and Environmental Engineering
    JO  - Journal of Civil, Construction and Environmental Engineering
    SP  - 140
    EP  - 146
    PB  - Science Publishing Group
    SN  - 2637-3890
    UR  - https://doi.org/10.11648/j.jccee.20170205.13
    AB  - A ten-storied building with shear walls in two directions with respect to the direction of lateral load acting on the building has been studied here. The finite element based software, ETABS (version 9.6) has been used for determining the moment at different area objects due to the lateral load and Simpson’s one-third rule has been used to calculate the line moment from mesh area. The study shows that, Shear Wall-1 (perpendicular to the lateral load direction) system produces more moment than the Shear Wall-2 (parallel to the load direction) system but around 45 percent of total negative or positive moment passes through column strip in SW-1 system and around 99 percent of negative or positive moment passes through the same strip in SW-2 system while rest of the moment passes through middle strip. Around 80 percent of column strip moment passes through effective strip (c+3h) in both of two systems.
    VL  - 2
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Civil and Environmental Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh

  • Department of Civil and Environmental Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh

  • Department of Civil and Environmental Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh

  • Sections