We have exploited conductive atomic force microscopy (CAFM) to characterize the vertical current transport from graphene (Gr) to the 2D electron gas of AlxGa1 xN/GaN heterostructures considering different kinds of AlGaN surfaces in terms of roughness and unevenness. The vertical current transport mechanism can radically change depending on these nanometer size superficial fluctuations whereby the nanoscale lateral resolution of CAFM current voltage (I V) measurements offers the ideal conditions to distinguish this effect form the average macroscopic behavior. We have characterized bare and Gr coated high quality AlGaN surface at first, observing for both a rectifying behavior. In particular the contact on Gr shows a lower Schottky barrier height (SBH) (ΦB = 0.4 eV) than the bare AlGaN (ΦB = 0.9 eV), and a smaller spread between the array of sampled positions. In particular this lateral homogeneity can be explained as an averaging effect of Gr on the AlGaN surface potential fluctuations over a length scale around the AFM tip in the order of the electron mean free path of a transferred CVD grown Gr (~100 nm). In order to exclude the role of the AFM metal tip force contact to the observed behavior we have performed a force dependent characterization establishing a tip force range in which this effect is negligible. We have also repeated the same characterizations on a Gr/AlGaN/GaN heterostructure with a high structured AlGaN surface. In this case a lower SBH (ΦB = 0.6 eV) and an ohmic behavior have been observed on bare AlGaN and Gr coated AlGaN respectively. This result has been attributed to the presence of preferential current paths in correspondence of the surface voids and the contemporary collection of the AFM morphology and the current map of the bare AlGaN has confirmed it. In particular, the ohmic behavior through Gr has been imputed to a contemporary lowering of the SBH and a homogenization effect of a certain density of preferential current paths
Published in | Nanoscience and Nanometrology (Volume 1, Issue 1) |
DOI | 10.11648/j.nsnm.20150101.11 |
Page(s) | 1-7 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Graphene, AlGaN/GaN Heterostructures, Atomic Force Microscopy, Conductive Atomic Force Microscopy
[1] | A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater., vol. 6, pp. 183-191, March. 2007. |
[2] | K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene”, Solid State Commun., vol. 146, pp. 351–355, June 2008. |
[3] | F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, “Gra-phene photonics and optoelectronics”, Nat. Photonics, vol. 4, pp. 611– 622, Semptember 2010. |
[4] | A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahn, F. Miao and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene”, Nano Lett, vol. 8, pp. 902-907, March 2008. |
[5] | C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, vol. 321, pp. 385-388, July 2008. |
[6] | S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, “Determi-nation of work function of graphene under a metal electrode and its role in contact resistance.,” Nano Lett., vol. 12, no. 8, pp. 3887–92, Aug. 2012. |
[7] | F. Xia, V. Perebeinos, Y. Lin, Y. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance”, Nat. Nanotechnol., vol. 6, pp. 179-184. February, 2011. |
[8] | H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung and K. Kim, “Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier”, Scence, vol. 336, pp. 1140–1142, May 2012. |
[9] | T. Filleter, K. V. Emtsev, T. Seyller, R. Bennewitz, “Local work function measurements of epitaxial graphene”, Appl. Phys. Lett. vol. 93, no. 133117(3), September 2008. |
[10] | F. Giannazzo, S. Sonde, V. Raineri, and E. Rimini, “Screening Length and Quantum Capacitance in Graphene by Scanning Probe Microscopy”, Nano Lett. vol. 9, 23-29, De-cember 2009. |
[11] | F. Giannazzo, I. Deretzis, A. La Magna, F. Roccaforte, R. Yakimova, “Electronic transport at monolayer-bilayer junc-tions in epitaxial graphene on SiC”, Phys. Rev. B vol. 86, no. 235422(6), December 2012. |
[12] | F. Giannazzo, S. Sonde, R. Lo Nigro, E. Rimini, V. Raineri, “Mapping the Density of Scattering Centers Limiting the Electron Mean Free Path in Graphene”, Nano Lett., vol. 11, pp. 4612–4618, October 2011. |
[13] | F. Giannazzo, V. Raineri, R. Yakimova, J.-R. Huntzinger, A. Tiberj, and J. Camassel, “Electrical properties of the gra-phene/4H-SiC (0001) interface probed by scanning current spectroscopy”, Phys. Rev. B, vol. 80, no. 241406(R), 2009. |
[14] | G. Fisichella, G. Greco, F. Roccaforte, F. Giannazzo, “Current transport in graphene/AlGaN/GaN vertical het-erostructures probed at nanoscale”, Nanoscale, vol. 6, pp. 8671-8680, August 2014. |
[15] | G. Fisichella, G. Greco, F. Roccaforte, and F. Giannazzo, “From Schottky to Ohmic graphene contacts to AlGaN/GaN heterostructures: Role of the AlGaN layer microstructure,” Appl. Phys. Lett., vol. 105, no. 6, no. 063117(5), August 2014. |
[16] | Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K. P. Loh, “Electrochemical Delamination of CVD-Grown Gra-phene Film: Toward the Recyclable Use of Copper Catalyst”, ACS Nano vol. 5(12), pp. 9927-9933, October 2011. |
[17] | G. Fisichella, S. Di Franco, F. Roccaforte, S. Ravesi, F. Giannazzo, “Microscopic mechanisms of graphene electrolytic delamination from metal substrates”, Appl. Phys. Lett., vol. 104, no. 233105(5), June 2014. |
[18] | W. Zhu, T. Low, V. Perebeinos, A. A. Bol, Y. Zhu, H. Yan, J. Tersoff and P. Avouris, “Structure and Electronic Transport in Graphene Wrinkles”, Nano Lett.vol. 12, pp. 3431-3436, May 2012. |
[19] | G. Greco, F. Giannazzo, F. Iucolano, R. Lo Nigro, and F. Roccaforte, “Nanoscale structural and electrical evolution of Ta- and Ti-based contacts on AlGaN/GaN heterostructures”, J. Appl. Phys. vol. 114, no. 083717(5), August 2013. |
[20] | L. Wang, F. M. Mohammed, and I. Adesida, "Differences in the reaction kinetics and contact formation mechanisms of annealed Ti/Al/Mo/Au Ohmic contacts on n-GaN and AlGaN/GaN epilayers", J. Appl. Phys. vol. 101, no. 013702(11), January 2007. |
[21] | F. Iucolano, F. Roccaforte, F. Giannazzo and V. Raineri, "Barrier inhomogeneity and electrical properties of Pt/GaN Schottky contacts", J. Appl. Phys. vol. 102, no. 113701(8), December 2007. |
[22] | W. Schottky, "Theory of blocking layer and point rectifiers", Z. Phys., vol. 113, pp. 367–414, 1939. |
[23] | N. F. Mott, "Note on the Contact between a Metal and an Insulator or Semiconductor", Proc. Cambridge Philos. Soc., vol. 34, pp. 568, 1938. |
[24] | J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, U. K. Mishra, "Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors", Appl. Phys. Lett. vol. 77, pp. 250-252, March 2000. |
APA Style
Gabriele Fisichella, Giuseppe Greco, Patrick Fiorenza, Salvatore Di Franco, Fabrizio Roccaforte, et al. (2015). Current mapping in Graphene Contacts to AlGaN/GaN Heterostructures. Nanoscience and Nanometrology, 1(1), 1-7. https://doi.org/10.11648/j.nsnm.20150101.11
ACS Style
Gabriele Fisichella; Giuseppe Greco; Patrick Fiorenza; Salvatore Di Franco; Fabrizio Roccaforte, et al. Current mapping in Graphene Contacts to AlGaN/GaN Heterostructures. Nanosci. Nanometrol. 2015, 1(1), 1-7. doi: 10.11648/j.nsnm.20150101.11
@article{10.11648/j.nsnm.20150101.11, author = {Gabriele Fisichella and Giuseppe Greco and Patrick Fiorenza and Salvatore Di Franco and Fabrizio Roccaforte and Filippo Giannazzo}, title = {Current mapping in Graphene Contacts to AlGaN/GaN Heterostructures}, journal = {Nanoscience and Nanometrology}, volume = {1}, number = {1}, pages = {1-7}, doi = {10.11648/j.nsnm.20150101.11}, url = {https://doi.org/10.11648/j.nsnm.20150101.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nsnm.20150101.11}, abstract = {We have exploited conductive atomic force microscopy (CAFM) to characterize the vertical current transport from graphene (Gr) to the 2D electron gas of AlxGa1 xN/GaN heterostructures considering different kinds of AlGaN surfaces in terms of roughness and unevenness. The vertical current transport mechanism can radically change depending on these nanometer size superficial fluctuations whereby the nanoscale lateral resolution of CAFM current voltage (I V) measurements offers the ideal conditions to distinguish this effect form the average macroscopic behavior. We have characterized bare and Gr coated high quality AlGaN surface at first, observing for both a rectifying behavior. In particular the contact on Gr shows a lower Schottky barrier height (SBH) (ΦB = 0.4 eV) than the bare AlGaN (ΦB = 0.9 eV), and a smaller spread between the array of sampled positions. In particular this lateral homogeneity can be explained as an averaging effect of Gr on the AlGaN surface potential fluctuations over a length scale around the AFM tip in the order of the electron mean free path of a transferred CVD grown Gr (~100 nm). In order to exclude the role of the AFM metal tip force contact to the observed behavior we have performed a force dependent characterization establishing a tip force range in which this effect is negligible. We have also repeated the same characterizations on a Gr/AlGaN/GaN heterostructure with a high structured AlGaN surface. In this case a lower SBH (ΦB = 0.6 eV) and an ohmic behavior have been observed on bare AlGaN and Gr coated AlGaN respectively. This result has been attributed to the presence of preferential current paths in correspondence of the surface voids and the contemporary collection of the AFM morphology and the current map of the bare AlGaN has confirmed it. In particular, the ohmic behavior through Gr has been imputed to a contemporary lowering of the SBH and a homogenization effect of a certain density of preferential current paths}, year = {2015} }
TY - JOUR T1 - Current mapping in Graphene Contacts to AlGaN/GaN Heterostructures AU - Gabriele Fisichella AU - Giuseppe Greco AU - Patrick Fiorenza AU - Salvatore Di Franco AU - Fabrizio Roccaforte AU - Filippo Giannazzo Y1 - 2015/07/29 PY - 2015 N1 - https://doi.org/10.11648/j.nsnm.20150101.11 DO - 10.11648/j.nsnm.20150101.11 T2 - Nanoscience and Nanometrology JF - Nanoscience and Nanometrology JO - Nanoscience and Nanometrology SP - 1 EP - 7 PB - Science Publishing Group SN - 2472-3630 UR - https://doi.org/10.11648/j.nsnm.20150101.11 AB - We have exploited conductive atomic force microscopy (CAFM) to characterize the vertical current transport from graphene (Gr) to the 2D electron gas of AlxGa1 xN/GaN heterostructures considering different kinds of AlGaN surfaces in terms of roughness and unevenness. The vertical current transport mechanism can radically change depending on these nanometer size superficial fluctuations whereby the nanoscale lateral resolution of CAFM current voltage (I V) measurements offers the ideal conditions to distinguish this effect form the average macroscopic behavior. We have characterized bare and Gr coated high quality AlGaN surface at first, observing for both a rectifying behavior. In particular the contact on Gr shows a lower Schottky barrier height (SBH) (ΦB = 0.4 eV) than the bare AlGaN (ΦB = 0.9 eV), and a smaller spread between the array of sampled positions. In particular this lateral homogeneity can be explained as an averaging effect of Gr on the AlGaN surface potential fluctuations over a length scale around the AFM tip in the order of the electron mean free path of a transferred CVD grown Gr (~100 nm). In order to exclude the role of the AFM metal tip force contact to the observed behavior we have performed a force dependent characterization establishing a tip force range in which this effect is negligible. We have also repeated the same characterizations on a Gr/AlGaN/GaN heterostructure with a high structured AlGaN surface. In this case a lower SBH (ΦB = 0.6 eV) and an ohmic behavior have been observed on bare AlGaN and Gr coated AlGaN respectively. This result has been attributed to the presence of preferential current paths in correspondence of the surface voids and the contemporary collection of the AFM morphology and the current map of the bare AlGaN has confirmed it. In particular, the ohmic behavior through Gr has been imputed to a contemporary lowering of the SBH and a homogenization effect of a certain density of preferential current paths VL - 1 IS - 1 ER -