On this paper, we present an in depth evaluation of the bipartite entanglement of cavity radiation from the optomechanical device with an optical parametric amplifier (OPA) placed inside two cavity mode, which together have interaction with a mechanical resonator. Right here by linearizing the equations of motion, we set the entanglement gift inside the gadget, the use of the logarithmic negativity as a degree. We thereby symbolize the adjustments inside the machine entanglement that result from the addition of an quadratic coupling to a linearly coupled gadget. With the assist of the optical parametric amplifier, the desk bounds macroscopic entanglement between the movable replicate and the hollow space subject can be mainly more suitable, and the degree of entanglement increases while the parametric gain increases as well as input laser electricity will increase. For that reason, while an optical parametric amplifier is delivered inside a hollow space, which leads to extensive improvement of the two-mode entanglement. These results establish a promising theoretical basis for optical parametric amplifier (OPA) more suitable bipartite entanglement of optomechanical device for quantum technology and advanced quantum information processing applications.
Published in | Optics (Volume 13, Issue 1) |
DOI | 10.11648/j.optics.20251301.11 |
Page(s) | 1-8 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Optomechanical System, Optical Parametric Amplifier (OPA), Logarithmic Negativity
[1] | Singh, S. K., and Muniandy, S. V. (2016). Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. International Journal of Theoretical Physics, 55, 287-301. |
[2] | Qamar, S., Al-Amri, M., and Zubairy, M. S. Erratum: Entanglement in a bright light source via Raman-driven coherence Phys. Rev. A, 013831 (2009). |
[3] | Mancini, S., & Tombesi, P. (1994). Quantum noise reduction by radiation pressure. Physical Review A, 49(5), 4055. |
[4] | Rugar, D., Budakian, R., Mamin, H. J., & Chui, B. W. (2004). Single spin detection by magnetic resonance force microscopy. Nature, 430(6997), 329-332. |
[5] | Ekinci, K. L., Yang, Y. T., & Roukes, M. L. (2004). Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. Journal of applied physics, 95(5), 2682-2689. |
[6] | Braginsky, V. B., & Vyatchanin, S. P. (2002). Low quantum noise tranquilizer for FabryˆaPerot interferometer. Physics Letters A, 293(5-6), 228-234. |
[7] | Kleckner, D., Marshall, W., de Dood, M. J., Dinyari, K. N., Pors, B. J., Irvine, W. T., & Bouwmeester, D. (2006). High finesse opto-mechanical cavity with a movable thirty-micron-size mirror. Physical review letters, 96(17), 173901. |
[8] | Singh, S. K., Mazaheri, M., Peng, J. X., Sohail, A., Gu, Z., and Asjad, M. (2023). Normal mode splitting and optical squeezing in a linear and quadratic optomechanical system with optical parametric amplifier. Quantum Information Processing, 22(5), 198. |
[9] | Abbott, B. P., Abbott, R., Abbott, T., Abernathy, M. R., Acernese, F., Ackley, K., ... & Cavalieri, R. (2016). Observation of gravitational waves from a binary black hole merger. Physical review letters, 116(6), 061102. |
[10] | Pikovski, I., Vanner, M. R., Aspelmeyer, M., Kim, M. S., & Brukner, A¨ . (2012). Probing Planck-scale physics with quantum optics. Nature Physics, 8(5), 393-397. |
[11] | Wang, Y. D., & Clerk, A. A. (2013). Reservoirengineered entanglement in optomechanical systems. Physical review letters, 110(25), 253601. |
[12] | Woolley, M. J., & Clerk, A. A. (2014). Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Physical Review A, 89(6), 063805. |
[13] | Massel, F. (2017). Mechanical entanglement detection in an optomechanical system. Physical Review A, 95(6), 063816. |
[14] | Ockeloen-Korppi, C. F., Damskägg, E., Pirkkalainen, J. M., Asjad, M., Clerk, A. A., Massel, F., ... & Sillanpää, M. A. (2018). Stabilized entanglement of massive mechanical oscillators. Nature, 556(7702), 478- 482. |
[15] | Li, B. B., Ou, L., Lei, Y., & Liu, Y. C. (2021). Cavity optomechanical sensing. Nanophotonics, 10(11), 2799- 2832. |
[16] | Sohail, A., Arif, R., Akhtar, N., Jia-Xin Peng, Z., Xianlong, G., Gu, Z.D.: A rotational-cavity optomechanical system with two revolving cavity mirrors: optical response and fast-slow light mechanism. arXiv:2301.06979. |
[17] | Sohail, A., Ahmed, R., Yu, C. S., Munir, T.: Enhanced entanglement induced by coulomb interaction in coupled optomechanical systems. Phys. Scr. 95(3), 035108 (2020). |
[18] | Wang, Q.: Precision temperature measurement with optomechanically induced transparency in an optomechanical system. Laser Phys. 28(7), 075201 (2018). |
[19] | Amazioug, M., Daoud, M., Singh, S. K., Asjad, M.: Strong photon antibunching effect in a double cavity optomechanical system with intracavity squeezed light. arXiv:2209.07401. |
[20] | Dobrindt, J. M., Wilson-Rae, I., Kippenberg, T. J.: Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008). |
[21] | Asjad, M., & Saif, F. (2014). Normal mode splitting in hybrid BEC-optomechanical system. Optik, 125(19), 5455-5460. |
[22] | Asjad, M. (2012). Cavity optomechanics with a BoseˆaEinstein condensate: Normal mode splitting. Journal of Modern Optics, 59(10), 917-922. |
[23] | Anwar, Javed, and M. Suhail Zubairy. ”Quantumstatistical properties of noise in a phase-sensitive linear amplifier.” Physical Review A, no. 1 (1994). |
[24] | Alebachew, Eyob. ”Enhanced squeezing and entanglement in a non-degenerate three-level cascade laser with injected squeezed light.” Optics communications, no. 1 (2007). |
[25] | Asjad, M., Zippilli, S., Tombesi, P., and Vitali, D. (2015). Large distance continuous variable communication with concatenated swaps. Physica Scripta, 90(7), 074055. |
[26] | Kundu, A., Jin, C., Peng, J. X.: Optical response of a dual membrane active/passive optomechanical cavity. Ann. Phys. 429, 168465 (2021). |
[27] | Clerk, A. A., Marquardt, F., Harris, J.G.E.: Quantum measurement of phonon shot noise. Phys. Rev. Lett. 104(21), 213603 (2010). |
[28] | Singh, S. K., Raymond Ooi, C.H.: Quantum correlations of quadratic optomechanical oscillator. J. Opt. Soc. Am. B 31, 2390 (2014). |
[29] | Singh, S. K., Muniandy, S.V.: Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. Int. J. Theor. Phys. 55, 287 (2016). |
[30] | Kundu, A., Singh, S. K.: HeisenbergâLangevin formalism for squeezing dynamics of linear hybrid optomechanical system. Int. J. Theor. Phys. 58, 2418 (2019). |
[31] | Asjad, M., Agarwal, G. S., Kim, M. S., Tombesi, P., Di Giuseppe, G., Vitali, D.: Robust stationary mechanical squeezing in a kicked quadratic optomechanical system. Phys. Rev. A 89(2), 023849 (2014). |
[32] | Kundu, A., Singh, S. K.: HeisenbergâLangevin formalism for squeezing dynamics of linear hybrid optomechanical system. Int. J. Theor. Phys. 58, 2418 (2019). |
[33] | Huang, S., Chen, A.: Fano resonance and amplification in a quadratically coupled optomechanical system with a Kerr medium. Phys. Rev. A 101(2), 023841 (2020). |
[34] | Abdi, M., Degenfeld-Schonburg, P., Sameti, M., Navarrete-Benlloch, C., Hartmann, M. J.: Dissipative optomechanical preparation of macroscopic quantum superposition states. Phys. Rev. Lett. 116(23), 233604 (2016). |
[35] | He, Q., Badshah, F., Li, L., Wang, L., Su, S. L., Liang, E.: Transparency, stokes and anti-stokes processes in a multimode quadratic coupling system with parametric amplifier. Ann. Phys. 533, 2000612 (2021). |
[36] | Vitali, D., Gigan, S., Ferreira, A., Bohm, H. R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007). |
[37] | Palomaki, T., Teufel, J., Simmonds, R., Lehnert, K.: Entangling mechanical motion with microwave fields. Science 342, 710 (2013). |
[38] | Asjad, M., Vitali, D.: Reservoir engineering of a mechanical resonator: generating a macroscopic superposition state and monitoring its decoherence. J. Phys. B Atomic Mol. Opt. Phys. 47, 045502 (2013). |
[39] | Singh, S. K., Asjad, M., & Ooi, C. R. (2022). Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well. Quantum Information Processing, 21(2), 47. |
[40] | Kundu, A., & Singh, S. K. (2019). Heisenberg- Langevin formalism for squeezing dynamics of linear hybrid optomechanical system. International Journal of Theoretical Physics, 58, 2418-2427. |
[41] | Braunstein, Samuel L., and H. Jeff Kimble. ”Dense coding for continuous variables.” Physical Review A , no. 4 (2000). |
[42] | Lloyd, S., and S. L. Braunstein. ”Erratum: Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics.” Phys. Rev. Lett. 82, (1999). |
[43] | Sun, H., Liu, Y., & Li, T. (2023). Application perspective of cavity optomechanical system. Frontiers in Quantum Science and Technology, 1, 1091691. |
[44] | Zhang, Cai-yun, Hu Li, Gui-xia Pan, and Zong-qiang Sheng. ”Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier.” Chinese Physics B 25, no. 7 (2016). |
[45] | Xiong, Han, Marlan O. Scully, and M. Suhail Zubairy. ”Correlated spontaneous emission laser as an entanglement amplifier.” Physical review letters, no. 2 (2005). |
[46] | Braunstein, Samuel L. ”Quantum error correction for communication with linear optics.” Nature 394, no. 6688 (1998). |
[47] | Blockley, C. A., and D. F. Walls. ”Intensity fluctuations in a frequency down-conversion process with three-level atoms.” Physical Review A, no. 9 (1991). |
[48] | Lu, Ning, Fang-Xiao Zhao, and J. Bergou. ”Nonlinear theory of a two-photon correlated-spontaneous-emission laser: A coherently pumped two-levelˆatwo-photon laser.” Physical Review A, no. 10 (1989). |
[49] | Singh, S. K., Peng, J. X., Asjad, M., & Mazaheri, M. (2021). Entanglement and coherence in a hybrid LaguerreˆaGaussian rotating cavity optomechanical system with two-level atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 54(21), 215502. |
[50] | Singh, S. K., Mazaheri, M., Peng, J. X., Sohail, A., Khalid, M., & Asjad, M. (2023). Enhanced weak force sensing based on atom-based coherent quantum noise cancellation in a hybrid cavity optomechanical system. Frontiers in Physics, 11, 245. |
[51] | Singh, S. K., Mazaheri, M., Peng, J. X., Sohail, A., Gu, Z., & Asjad, M. (2023). Normal mode splitting and optical squeezing in a linear and quadratic optomechanical system with optical parametric amplifier. Quantum Information Processing, 22(5), 198. |
[52] | Abebe, T. ”The quantum analysis of nondegenerate threelevel laser with spontaneous emission and noiseless vacuum reservoir.” Ukrainian Journal of Physics, no. 11 (2018). |
[53] | Einstein, Albert, Boris Podolsky, and Nathan Rosen. ”Can quantum-mechanical description of physical reality be considered complete?.” Physical review, no. 10 (1935). |
[54] | Bell, John S. ”On the einstein podolsky rosen paradox.” Physics Physique Fizika, no. 3 (1964). |
[55] | Teklu, Berihu. ”Parametric oscillation with the cavity mode driven by coherent light and coupled to a squeezed vacuum reservoir.” Optics communications, no. 2 (2006). |
[56] | Liu, Jin-Ming, Bao-Sen Shi, Xiao-Feng Fan, Jian Li, and Guang-Can Guo. ”Wigner function description of continuous variable entanglement swapping.” Journal of Optics B: Quantum and Semiclassical Optics, no. 4 (2001). |
[57] | Tesfa, Sintayehu. ”A comparative study of entanglement amplification in a nondegenerate three-level cascade laser employing various inseparability criteria.” Journal of Physics B: Atomic, Molecular and Optical Physics, no. 21 (2009). |
[58] | Abebe, Tamirat. ”Coherently driven nondegenerate threelevel laser with noiseless vacuum reservoir.” Bulgarian Journal of Physics, no. 4 (2018). |
[59] | Tesfa, Sintayehu. ”Dynamics of the cavity radiation of a correlated emission laser initially seeded with a thermal light.” Physica Scripta, no. 4 (2011). |
[60] | Tesfa, Sintayehu. ”Entanglement amplification in a nondegenerate three-level cascade laser.” Physical Review A, no. 4 (2006). |
[61] | Ou, Z. Y., Silvana F. Pereira, H. J. Kimble, and K. C. Peng. ”Realization of the Einstein-Podolsky-Rosen paradox for continuous variables.” Physical Review Letters , no. 25 (1992). |
[62] | Kassahun, F. ”Fundamental of Quantum Optics Lulu.” North Calorina (2008). |
[63] | Abebe, Tamirat. ”Effect of Phase Fluctuations and Dephasing on the Dynamics of Correlated Photons from a Nondegenerate Three-Level Cascade Laser.” Journal of Russian Laser Research (2021). |
[64] | Abebe, T., and Ch Gashu. ”Generation of Entangled Light from a Nondegenerate Three-Level Laser Coupled to a Two-Mode Vacuum Reservoir.” Ukrainian Journal of Physics, no. 7 (2021). |
[65] | Abebe, T., N. Gemechu, K. Shogile, S. Hailemariam, Ch Gashu, and Sh Adisu. ”Entanglement quantification using various inseparability criteria for correlated photons.” Romanian Journal of Physics, no. 3-4 (2020). |
[66] | Fesseha, K. ”Parametric oscillation with a squeezed vacuum.” Optics communications, no. 1-3 (1998). |
[67] | Glasser, Ryan T., Hugo Cable, Jonathan P. Dowling, Francesco De Martini, Fabio Sciarrino, and Chiara Vitelli. ”Entanglement-seeded, dual, optical parametric amplification: applications to quantum imaging and metrology.” Physical Review A, no. 1 (2008). |
[68] | Lugiato, L. A., and G. Strini. ”On the squeezing obtainable in parametric oscillators and bistable absorption.” Optics Communications, no. 1 (1982). |
[69] | Milburn, G., and D. F. Walls. ”Production of squeezed states in a degenerate parametric amplifier.” Optics Communications, no. 6 (1981). |
[70] | Drummond, P. D., K. Dechoum, and S. Chaturvedi. ”Critical quantum fluctuations in the degenerate parametric oscillator.” Physical Review A, no. 3 (2002). |
[71] | Reid, M. D., and P. D. Drummond. ”Quantum correlations of phase in nondegenerate parametric oscillation.” Physical review letters , no. 26 (1988). |
APA Style
Belachew, S., Feyissa, F. (2025). Enhancing Bipartite Entanglement via Optical Parametric Amplifier in an Optomechanical Device. Optics, 13(1), 1-8. https://doi.org/10.11648/j.optics.20251301.11
ACS Style
Belachew, S.; Feyissa, F. Enhancing Bipartite Entanglement via Optical Parametric Amplifier in an Optomechanical Device. Optics. 2025, 13(1), 1-8. doi: 10.11648/j.optics.20251301.11
@article{10.11648/j.optics.20251301.11, author = {Sisay Belachew and Firomsa Feyissa}, title = {Enhancing Bipartite Entanglement via Optical Parametric Amplifier in an Optomechanical Device}, journal = {Optics}, volume = {13}, number = {1}, pages = {1-8}, doi = {10.11648/j.optics.20251301.11}, url = {https://doi.org/10.11648/j.optics.20251301.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.optics.20251301.11}, abstract = {On this paper, we present an in depth evaluation of the bipartite entanglement of cavity radiation from the optomechanical device with an optical parametric amplifier (OPA) placed inside two cavity mode, which together have interaction with a mechanical resonator. Right here by linearizing the equations of motion, we set the entanglement gift inside the gadget, the use of the logarithmic negativity as a degree. We thereby symbolize the adjustments inside the machine entanglement that result from the addition of an quadratic coupling to a linearly coupled gadget. With the assist of the optical parametric amplifier, the desk bounds macroscopic entanglement between the movable replicate and the hollow space subject can be mainly more suitable, and the degree of entanglement increases while the parametric gain increases as well as input laser electricity will increase. For that reason, while an optical parametric amplifier is delivered inside a hollow space, which leads to extensive improvement of the two-mode entanglement. These results establish a promising theoretical basis for optical parametric amplifier (OPA) more suitable bipartite entanglement of optomechanical device for quantum technology and advanced quantum information processing applications.}, year = {2025} }
TY - JOUR T1 - Enhancing Bipartite Entanglement via Optical Parametric Amplifier in an Optomechanical Device AU - Sisay Belachew AU - Firomsa Feyissa Y1 - 2025/06/03 PY - 2025 N1 - https://doi.org/10.11648/j.optics.20251301.11 DO - 10.11648/j.optics.20251301.11 T2 - Optics JF - Optics JO - Optics SP - 1 EP - 8 PB - Science Publishing Group SN - 2328-7810 UR - https://doi.org/10.11648/j.optics.20251301.11 AB - On this paper, we present an in depth evaluation of the bipartite entanglement of cavity radiation from the optomechanical device with an optical parametric amplifier (OPA) placed inside two cavity mode, which together have interaction with a mechanical resonator. Right here by linearizing the equations of motion, we set the entanglement gift inside the gadget, the use of the logarithmic negativity as a degree. We thereby symbolize the adjustments inside the machine entanglement that result from the addition of an quadratic coupling to a linearly coupled gadget. With the assist of the optical parametric amplifier, the desk bounds macroscopic entanglement between the movable replicate and the hollow space subject can be mainly more suitable, and the degree of entanglement increases while the parametric gain increases as well as input laser electricity will increase. For that reason, while an optical parametric amplifier is delivered inside a hollow space, which leads to extensive improvement of the two-mode entanglement. These results establish a promising theoretical basis for optical parametric amplifier (OPA) more suitable bipartite entanglement of optomechanical device for quantum technology and advanced quantum information processing applications. VL - 13 IS - 1 ER -