No doubt, a notion of the hollow dimension modules can constitute a very important situation in the module theory. Therefore, our work presents a key role mainly in some properties and characterizations of hollow and hollow dimension module. We prove that if R be a V-ring and M is semisimple with indecomposable property, then M is hollow module. Also we study characterization the relation between lifting property and hollow-lifting module. We prove that if M is a nonzero indecomposable and lifting module over a commutative noetherian ring R then M is hollow module. Let M be an R-module and N be a submodule of M if hdim(M) = hdim(M/N) + hdim(N), then M is supplemented module.
Published in | Pure and Applied Mathematics Journal (Volume 2, Issue 5) |
DOI | 10.11648/j.pamj.20130205.12 |
Page(s) | 156-161 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Hollow Module, Indecomposable Module, Hollow Dimension Module, Hollow-Lifting Module
[1] | A. Idelhadj, R. Tribak, On Some Properties of ⊕-Supplemented Modules, IJMMS :69, 4373–4387, 2003. |
[2] | C. Lomp, On Dual Goldie Dimension, Diplomarbeit (M. Sc. Thesis), Doesseldorf (1996). |
[3] | C. Lomp, On semilocal modules and rings, Comm. Algebra 27(4), (1999), PP. 1921-1935. |
[4] | D. Keskinl and C. Lomp, On Lifting LE-Modules, Vietnam Journal ol Mathematics 3O:2, 167-176, 2002. |
[5] | D. Keskin, On lifting modules, Comm. Algebra, 28(7) , 3427-3440, 2000. |
[6] | D. Herbera and A. Shamsuddin, Moduleswith Semi-local Endomorphism Ring, proceedings of the american mathematical society, Vol 123, No 12, 1995. |
[7] | D. K. Tutuncu and S. H. Mohamed, Weak Lifting Modules with Small Radical, Ring and Module Theory Trends in Mathematics, 129–134, 2010 Springer Basel AG. |
[8] | E. Turkmen and A. Pancar, On Radical Supplemented Modules, International Journal of Computational Cognition, Vol. 7, No. 1, MARCH 2009. |
[9] | J. Clark, C. Lomp, N. Vajana, and R. Wisbauer. Lifting Modules. Birkhauser Verlag Basel, Boston-Berlin, 2006. 22:3 |
[10] | N. Orhan, D. K.Tutuncu and R.Tribak, On Hollow-Lifting Modules,Taiwanese Journal of Mathematics,Vol. 11, No. 2, 545-568, June 2007. |
[11] | O. Nil, K. T. Derya, Hollow dimension of modules, J Zhejiang Univ SCI 2, 6A(10):1055-1057, 2005. |
[12] | R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, Philadelphia, (1991). |
[13] | S. H. Mohamed and B. J. Muller, Continuous and discrete modules, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge, 1990., Proposition A.7 |
[14] | S. Top, Totally weak Supplemented Modules, Thesis Master, July (2007), Izmir. |
[15] | T. Amoozegar, On Generalized Lifting Modules,Tarbiat Moallem University, 20th Seminar on Algebra,2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 21-23. |
[16] | Y. Talebi, A Generalization of Lifting Modules, Int. J. Contemp. Math. Sciences, Vol. 2, no. 22, 1069 – 1075, 2007. |
APA Style
Majid Mohammed, Abd Ghafur Bin Ahmad. (2013). On Some Properties of Hollow and Hollow Dimension Modules. Pure and Applied Mathematics Journal, 2(5), 156-161. https://doi.org/10.11648/j.pamj.20130205.12
ACS Style
Majid Mohammed; Abd Ghafur Bin Ahmad. On Some Properties of Hollow and Hollow Dimension Modules. Pure Appl. Math. J. 2013, 2(5), 156-161. doi: 10.11648/j.pamj.20130205.12
AMA Style
Majid Mohammed, Abd Ghafur Bin Ahmad. On Some Properties of Hollow and Hollow Dimension Modules. Pure Appl Math J. 2013;2(5):156-161. doi: 10.11648/j.pamj.20130205.12
@article{10.11648/j.pamj.20130205.12, author = {Majid Mohammed and Abd Ghafur Bin Ahmad}, title = {On Some Properties of Hollow and Hollow Dimension Modules}, journal = {Pure and Applied Mathematics Journal}, volume = {2}, number = {5}, pages = {156-161}, doi = {10.11648/j.pamj.20130205.12}, url = {https://doi.org/10.11648/j.pamj.20130205.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20130205.12}, abstract = {No doubt, a notion of the hollow dimension modules can constitute a very important situation in the module theory. Therefore, our work presents a key role mainly in some properties and characterizations of hollow and hollow dimension module. We prove that if R be a V-ring and M is semisimple with indecomposable property, then M is hollow module. Also we study characterization the relation between lifting property and hollow-lifting module. We prove that if M is a nonzero indecomposable and lifting module over a commutative noetherian ring R then M is hollow module. Let M be an R-module and N be a submodule of M if hdim(M) = hdim(M/N) + hdim(N), then M is supplemented module.}, year = {2013} }
TY - JOUR T1 - On Some Properties of Hollow and Hollow Dimension Modules AU - Majid Mohammed AU - Abd Ghafur Bin Ahmad Y1 - 2013/09/30 PY - 2013 N1 - https://doi.org/10.11648/j.pamj.20130205.12 DO - 10.11648/j.pamj.20130205.12 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 156 EP - 161 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.20130205.12 AB - No doubt, a notion of the hollow dimension modules can constitute a very important situation in the module theory. Therefore, our work presents a key role mainly in some properties and characterizations of hollow and hollow dimension module. We prove that if R be a V-ring and M is semisimple with indecomposable property, then M is hollow module. Also we study characterization the relation between lifting property and hollow-lifting module. We prove that if M is a nonzero indecomposable and lifting module over a commutative noetherian ring R then M is hollow module. Let M be an R-module and N be a submodule of M if hdim(M) = hdim(M/N) + hdim(N), then M is supplemented module. VL - 2 IS - 5 ER -