In this paper we study on commutative rings with identity and all modules are unital left R-modules unless otherwise stated. We define the concept of small submodules for localization modules and additionally, we present the relation between an R-module M and an R_p-localization module M_p for all maximal ideals of R in view of being supplemented.
Published in | Pure and Applied Mathematics Journal (Volume 3, Issue 3) |
DOI | 10.11648/j.pamj.20140303.12 |
Page(s) | 66-69 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Small Submodule, Supplemented Module, Multiplicative Closed Set, Localization Module
[1] | Alizade, R., Pancar, A., 1991. Homoloji Cebire Giriş, Ondokuz Mayıs Üniversitesi Fen Edebiyat Fakültesi, Samsun. |
[2] | Anderson, F.W., Fuller K.R., 1974, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin. |
[3] | Çallıalp, F., Tekir, Ü., 2009. Değişmeli Halkalar ve Modüller, Birsen Yayınevi, İstanbul. |
[4] | Faith, C., 1976, Algebra II: Ring Theory, Springer- Verlag, Berlin. |
[5] | Hungerford, T.W., 1973. Algebra, Springer-Verlag, New York. |
[6] | Lam, T. Y., Lectures on modules and rings, ser. Graduate texts in Mathematics. New York: Springer, 1999, vol. 189. |
[7] | Larsen, M.D., McCarthy, P.J., 1971. Multiplicative Theory of Ideals, Academic Press, New York and London. |
[8] | Moore, D.G., 1968. Prime and Radical Submodules of Modules over Commutative Rings, Vol.30, No.10, 5037-5064. |
[9] | Mohamed, S. H. and Müller, B. J., Continuous and discrete modules, ser. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1990, vol. 147. |
[10] | Sharpe, D.W., Vamos, P., 1972. Injective Modules, Cambridge University Press. |
[11] | Taşçı, D., 2007. Soyut Cebir, Alp Yayınevi, Ankara. |
[12] | Northcott, D.G., 1968. Lessons on Rings, Modules and Multiplicity, Cambridge University Press. |
[13] | J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, 2006. Lifting Modules, Supplements and projectivity in module theory, Front. Math., Birkhauser Verlag, Basel. |
[14] | Wisbauer, R., 1991. Foundations of Module and Ring Theory, Gordon and Breach (Philadelphia). |
[15] | Shang, Y. On the ideals of commutative local rings, Kochi Journal of Mathematics, 2013, vol. 8, 13--17. |
APA Style
Esra Öztürk, Şenol Eren. (2014). A Note on Localization of Supplemented Modules. Pure and Applied Mathematics Journal, 3(3), 66-69. https://doi.org/10.11648/j.pamj.20140303.12
ACS Style
Esra Öztürk; Şenol Eren. A Note on Localization of Supplemented Modules. Pure Appl. Math. J. 2014, 3(3), 66-69. doi: 10.11648/j.pamj.20140303.12
@article{10.11648/j.pamj.20140303.12, author = {Esra Öztürk and Şenol Eren}, title = {A Note on Localization of Supplemented Modules}, journal = {Pure and Applied Mathematics Journal}, volume = {3}, number = {3}, pages = {66-69}, doi = {10.11648/j.pamj.20140303.12}, url = {https://doi.org/10.11648/j.pamj.20140303.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20140303.12}, abstract = {In this paper we study on commutative rings with identity and all modules are unital left R-modules unless otherwise stated. We define the concept of small submodules for localization modules and additionally, we present the relation between an R-module M and an R_p-localization module M_p for all maximal ideals of R in view of being supplemented.}, year = {2014} }
TY - JOUR T1 - A Note on Localization of Supplemented Modules AU - Esra Öztürk AU - Şenol Eren Y1 - 2014/07/10 PY - 2014 N1 - https://doi.org/10.11648/j.pamj.20140303.12 DO - 10.11648/j.pamj.20140303.12 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 66 EP - 69 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.20140303.12 AB - In this paper we study on commutative rings with identity and all modules are unital left R-modules unless otherwise stated. We define the concept of small submodules for localization modules and additionally, we present the relation between an R-module M and an R_p-localization module M_p for all maximal ideals of R in view of being supplemented. VL - 3 IS - 3 ER -