| Peer-Reviewed

On the Construction of Regions of Stability

Received: 31 July 2014     Accepted: 20 August 2014     Published: 30 August 2014
Views:       Downloads:
Abstract

In this paper we built a stability region around the origin for the Liénard equation (4) to ensure stability and boundedness of solutions of this equation, without making use of the classical Second Method of Lyapunov. We compare our result with some others proposed by different authors.

Published in Pure and Applied Mathematics Journal (Volume 3, Issue 4)
DOI 10.11648/j.pamj.20140304.12
Page(s) 87-91
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Lyapunov, Trajectories, Asymptotic Equilibrium

References
[1] Acosta, J., L. M. Lugo, J. E. Nápoles V. and S. I. Noya (2013)-“On some qualitative properties of a nonautonomous Liénard equation”, submitted.
[2] Guidorizzi, H. L. (1996)-“The family of functions S,k and the Liénard equation”, Tamkang J. of Math. 27, 37-54.
[3] Hasan, Y. Q. and L. M. Zhu (2007)-“The bounded solutions of Liénard equation”, J. Applied Sciences 7(8), 1239-1240.
[4] LaSalle, J. P. (1960)-“Some Extensions of Lyapunov’s Second Method”, IRE Transactions on Circuit Theory, Dec, 520-527.
[5] Lugo L. M., J. E. Nápoles V. and S. I. Noya (2013)-“About a region of boundedness for some nonautonomous Lienard’s Equation”, Annual Meeting of the UMA, Universidad Nacional de Rosario, September 17-20 (Spanish).
[6] Lyapunov, A. M. (1949)-“Problème general de la stabilité du movement”, Annals of Math. Studies, No.17, Princeton University Press, Princeton, N.J.
[7] Lyapunov, A. M. (1966)-“Stability of Motion”, Academic Press, New-York & London, 1966.
[8] Lyapunov, A. M. (1992)-“The General Problem of the Stability of Motion”, (A. T. Fuller trans.) Taylor & Francis, London 1992.
[9] Miller, R. K. and A. N. Michel (1982)-„Ordinary Differential Equation“, New York, Lawa Stat University.
[10] Nápoles Valdes, J. E. (2000)-“On the boundedness and global asymptotic stability of Liénard equation with restoring term”, Revista de la Unión Matemática Argentina 41(4), 47-59.
[11] Nápoles, J. E. and A. I. Ruiz (1997)-“Convergence in nonlinear systems with a forcing term”, Revista de Matemática: Teoría y Aplicaciones 4(1): 1-4.
[12] Yadeta, Z. (2013)-“Lyapunov´s Second Method for Estimating Region of Asymptotic Stability”, Open Science Repository Mathematics, online, doi: dx.doi.org/10.7392/Mathematics.70081944, available in http://www.open-science-repository.com/lyapunovs-second-method-for-estimating-region-of-asymptotic-stability.html
[13] Yoshizawa, T. (1966)-“Stability theory by Liapunov´s Second Method”, The Math. Soc. of Japan.
Cite This Article
  • APA Style

    Luciano Miguel Lugo, Juan Eduardo Nápoles Valdés, Samuel Iván Noya. (2014). On the Construction of Regions of Stability. Pure and Applied Mathematics Journal, 3(4), 87-91. https://doi.org/10.11648/j.pamj.20140304.12

    Copy | Download

    ACS Style

    Luciano Miguel Lugo; Juan Eduardo Nápoles Valdés; Samuel Iván Noya. On the Construction of Regions of Stability. Pure Appl. Math. J. 2014, 3(4), 87-91. doi: 10.11648/j.pamj.20140304.12

    Copy | Download

    AMA Style

    Luciano Miguel Lugo, Juan Eduardo Nápoles Valdés, Samuel Iván Noya. On the Construction of Regions of Stability. Pure Appl Math J. 2014;3(4):87-91. doi: 10.11648/j.pamj.20140304.12

    Copy | Download

  • @article{10.11648/j.pamj.20140304.12,
      author = {Luciano Miguel Lugo and Juan Eduardo Nápoles Valdés and Samuel Iván Noya},
      title = {On the Construction of Regions of Stability},
      journal = {Pure and Applied Mathematics Journal},
      volume = {3},
      number = {4},
      pages = {87-91},
      doi = {10.11648/j.pamj.20140304.12},
      url = {https://doi.org/10.11648/j.pamj.20140304.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20140304.12},
      abstract = {In this paper we built a stability region around the origin for the Liénard equation (4) to ensure stability and boundedness of solutions of this equation, without making use of the classical Second Method of Lyapunov. We compare our result with some others proposed by different authors.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - On the Construction of Regions of Stability
    AU  - Luciano Miguel Lugo
    AU  - Juan Eduardo Nápoles Valdés
    AU  - Samuel Iván Noya
    Y1  - 2014/08/30
    PY  - 2014
    N1  - https://doi.org/10.11648/j.pamj.20140304.12
    DO  - 10.11648/j.pamj.20140304.12
    T2  - Pure and Applied Mathematics Journal
    JF  - Pure and Applied Mathematics Journal
    JO  - Pure and Applied Mathematics Journal
    SP  - 87
    EP  - 91
    PB  - Science Publishing Group
    SN  - 2326-9812
    UR  - https://doi.org/10.11648/j.pamj.20140304.12
    AB  - In this paper we built a stability region around the origin for the Liénard equation (4) to ensure stability and boundedness of solutions of this equation, without making use of the classical Second Method of Lyapunov. We compare our result with some others proposed by different authors.
    VL  - 3
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Facultad de Ciencias Exactas, UNNE, Av. Libertad 5540 (3400), Corrientes, ARGENTINA

  • Facultad de Ciencias Exactas, UNNE, Av. Libertad 5540 (3400), Corrientes, ARGENTINA

  • Facultad Regional Resistencia, UTN, French 414 (3500), Resistencia, ARGENTINA

  • Sections