In this work questions on approximation of locally summable functions by singular integrals are investigated. Was estimated the rate of approximation in terms of various metric characteristics describing the structural properties of the given function.
Published in | Pure and Applied Mathematics Journal (Volume 3, Issue 6) |
DOI | 10.11648/j.pamj.20140306.11 |
Page(s) | 113-120 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Approximation, Singular Integrals, Bounded Mean Oscillation, Vanishing Mean Oscillation
[1] | Butzer P.L., Nessel R.J. Fourier analysis and approximation. Vol.1: One-Dimensional Theory. New York and London, 1971. |
[2] | Calderon A.P., Zygmund A. On the existence of certain singular integrals. Acta. Math., 1952, v.88, pp.85-139. |
[3] | Gadzhiev N.M., Rzaev R.M. On the order of locally summable functions approximation by singular integrals. Funct. Approx. Comment. Math., 1992, v.20, pp.35-40. |
[4] | Garnett J.B. Bounded analytic functions. Academic Press Inc., New York, 1981. |
[5] | Golubov B.I. On asymptotics of multiple singular integrals for differentiable functions. Matem. Zametki, 1981, v.30, No5, pp.749-762 (Russian). |
[6] | Janson S. On functions with conditions on the mean oscillation. Ark. math., 1976, v.14, No2, pp. 189-196. |
[7] | John F., Nirenberg L. On functions of bounded mean oscillation. Comm. Pure Appl. Math., 1961, v.14, pp.415-426. |
[8] | Kerman R.A. Pointwise convergent approximate identities of dilated radially decreasing kernels. Proc. Amer. Math. Soc., 1987, v.101, No1, pp.41-44. |
[9] | Rzaev R.M. On approximation of essentially continuous functions by singular integrals. Izv. Vuzov. Matematika, 1989, No3, pp.57-62 (Russian). |
[10] | Rzaev R.M. On approximation of locally summable functions by singular integrals in terms of mean oscillation and some applications. Preprint Inst. Phys. Natl. Acad. Sci. Azerb., 1992, №1, p.1-43 (Russian). |
[11] | Rzaev R.M. A multidimensional singular integral operator in the spaces defined by conditions on the -th order mean oscillation. Dokady Mathematics, 1997, v.56, No2, pp.747-749. |
[12] | Rzaev R.M., Aliyeva L.R. On local properties of functions and singular integrals in terms of the mean oscillation. Cent. Eur. J. Math., 2008, v.6, No4, p.595-609. |
[13] | Sarason D. Functions of vanishing mean oscillation. Trans. Amer. Math. Soc., 1975, v.207, pp. 391-405. |
[14] | Spanne S. Some function spaces defined using the mean oscillation over cubes. Ann. Scuola Norm. Sup. Pisa, 1965, v.19, No4, pp.593-608. |
[15] | Stein E.M., Singular integrals and differentiability properties of functions. Princeton University Press. Princeton, New J., 1970. |
[16] | Stein E.M., Weiss G. Introduction to Fourier Analysis on Euclidean spaces. Princeton University Press. Princeton, New J., 1971. |
APA Style
Rahim M. Rzaev, Gulnara Kh. Mammadova, Mansur Sh. Maharramov. (2014). Approximation of Functions by Singular Integrals. Pure and Applied Mathematics Journal, 3(6), 113-120. https://doi.org/10.11648/j.pamj.20140306.11
ACS Style
Rahim M. Rzaev; Gulnara Kh. Mammadova; Mansur Sh. Maharramov. Approximation of Functions by Singular Integrals. Pure Appl. Math. J. 2014, 3(6), 113-120. doi: 10.11648/j.pamj.20140306.11
AMA Style
Rahim M. Rzaev, Gulnara Kh. Mammadova, Mansur Sh. Maharramov. Approximation of Functions by Singular Integrals. Pure Appl Math J. 2014;3(6):113-120. doi: 10.11648/j.pamj.20140306.11
@article{10.11648/j.pamj.20140306.11, author = {Rahim M. Rzaev and Gulnara Kh. Mammadova and Mansur Sh. Maharramov}, title = {Approximation of Functions by Singular Integrals}, journal = {Pure and Applied Mathematics Journal}, volume = {3}, number = {6}, pages = {113-120}, doi = {10.11648/j.pamj.20140306.11}, url = {https://doi.org/10.11648/j.pamj.20140306.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.20140306.11}, abstract = {In this work questions on approximation of locally summable functions by singular integrals are investigated. Was estimated the rate of approximation in terms of various metric characteristics describing the structural properties of the given function.}, year = {2014} }
TY - JOUR T1 - Approximation of Functions by Singular Integrals AU - Rahim M. Rzaev AU - Gulnara Kh. Mammadova AU - Mansur Sh. Maharramov Y1 - 2014/11/17 PY - 2014 N1 - https://doi.org/10.11648/j.pamj.20140306.11 DO - 10.11648/j.pamj.20140306.11 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 113 EP - 120 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.20140306.11 AB - In this work questions on approximation of locally summable functions by singular integrals are investigated. Was estimated the rate of approximation in terms of various metric characteristics describing the structural properties of the given function. VL - 3 IS - 6 ER -