In this article we give a variation of the converse of Fabry Gap theorem concerning the location of singularities of Taylor-Dirichlet series, on the boundary of convergence. whose circle of convergence is the unit circle and for which the unit circle is not the natural boundary.
Published in | Science Journal of Applied Mathematics and Statistics (Volume 3, Issue 2) |
DOI | 10.11648/j.sjams.20150302.15 |
Page(s) | 58-62 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Dirichlet Series, Entire Functions, Fabry Gap Theorem
[1] | Berenstein, C.A., and Gay Roger, Complex Analysis and Special Topics in Harmonic Analysis (New York, Inc: Springer-Verlag), (1995). |
[2] | Blambert, M. and Parvatham, R., “Ultraconvergence et singualarites pour une classe de series d exponentielles.” Universite de Grenoble. Annales de l’Institut Fourier, 29(1), (1979), 239–262. |
[3] | Blambert, M. and Parvatham, R., “Sur une inegalite fondamentale et les singualarites d une fonction analytique definie par un element LC-dirichletien. ” Universite de Grenoble. Annales de l’Institut Fourier, 33(4), (1983), 135–160. |
[4] | Berland, M., “On the convergenve and singularities of analytic functions defined by E-Dirichletian elements. ” Annales des Sciences Mathematiques du Quebec, 22(1),(1998), 1–15. |
[5] | Boas, R.P. Jr, , “Entire Functions,” (New York: Academic Press), (1954). |
[6] | Erdos, P., “Note on the converse of Fabry's Gap theorem,” Trans. Amer. Math. Soc., 57, (1945), 102-104. |
[7] | Polya, G., “On converse Gap theorems, ” Trans. Amer. Math. Soc., 52, (1942), 65-71. |
[8] | Levin, B. Ya., “Distribution of Zeros of Entire Functions,” (Providence, R.I.: Amer. Math. Soc.), (1964). |
[9] | Levin, B. Ya., “Lectures on Entire Functions, ” (Providence, R.I.: Amer. Math. Soc.), (1996). |
[10] | Levinson, N., “Gap and Density Theorems. ” American Mathematical Society Colloquium Publications, Vol. 26 (New York: Amer. Math. Soc.), (1940). |
[11] | Mandelbrojt, S., “Dirichlet Series, Principles and Methods,” (Dordrecht: D. Reidel Publishing Co.), (1972), pp. x166. |
[12] | Zikkos, E., “On a theorem of Norman Levinson and a variation of the Fabry Gap theorem,” Complex Variables, 50 (4), (2005), 229-255. |
APA Style
Molood Gorji, Naser Abbasi. (2015). On Convergence a Variation of the Converse of Fabry Gap Theorem. Science Journal of Applied Mathematics and Statistics, 3(2), 58-62. https://doi.org/10.11648/j.sjams.20150302.15
ACS Style
Molood Gorji; Naser Abbasi. On Convergence a Variation of the Converse of Fabry Gap Theorem. Sci. J. Appl. Math. Stat. 2015, 3(2), 58-62. doi: 10.11648/j.sjams.20150302.15
AMA Style
Molood Gorji, Naser Abbasi. On Convergence a Variation of the Converse of Fabry Gap Theorem. Sci J Appl Math Stat. 2015;3(2):58-62. doi: 10.11648/j.sjams.20150302.15
@article{10.11648/j.sjams.20150302.15, author = {Molood Gorji and Naser Abbasi}, title = {On Convergence a Variation of the Converse of Fabry Gap Theorem}, journal = {Science Journal of Applied Mathematics and Statistics}, volume = {3}, number = {2}, pages = {58-62}, doi = {10.11648/j.sjams.20150302.15}, url = {https://doi.org/10.11648/j.sjams.20150302.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjams.20150302.15}, abstract = {In this article we give a variation of the converse of Fabry Gap theorem concerning the location of singularities of Taylor-Dirichlet series, on the boundary of convergence. whose circle of convergence is the unit circle and for which the unit circle is not the natural boundary.}, year = {2015} }
TY - JOUR T1 - On Convergence a Variation of the Converse of Fabry Gap Theorem AU - Molood Gorji AU - Naser Abbasi Y1 - 2015/04/03 PY - 2015 N1 - https://doi.org/10.11648/j.sjams.20150302.15 DO - 10.11648/j.sjams.20150302.15 T2 - Science Journal of Applied Mathematics and Statistics JF - Science Journal of Applied Mathematics and Statistics JO - Science Journal of Applied Mathematics and Statistics SP - 58 EP - 62 PB - Science Publishing Group SN - 2376-9513 UR - https://doi.org/10.11648/j.sjams.20150302.15 AB - In this article we give a variation of the converse of Fabry Gap theorem concerning the location of singularities of Taylor-Dirichlet series, on the boundary of convergence. whose circle of convergence is the unit circle and for which the unit circle is not the natural boundary. VL - 3 IS - 2 ER -