American Journal of BioScience

| Peer-Reviewed |

Frequency of Merozoite Surface Protein 2 (MSP2) Allelic Families and Sulphadoxine-Pyrimethamine (SP) Resistance Markers Among Pregnant Women in Delta State, Nigeria)

Received: Feb. 08, 2020    Accepted: Feb. 20, 2020    Published: Mar. 17, 2020
Views:       Downloads:

Share This Article

Abstract

Malaria in pregnancy is a public health problem and requires prophylactic treatment with Sulphadoxine–Pyrimethamine (SP) drug. However, the emergence and spread of SP-resistance P. falciparum parasite across Nigeria poses serious threat to the efficacy and effectiveness of this preventive intervention. This study aimed to determine the frequency of MSP2 allelic families and SP resistance molecular markers of P. falciparum among asymptomatic pregnant women in Asaba, Delta State. Rapid Diagnostic Test (RDT) and Microscopy were used to detect malaria parasite infection among the study participants. Polymerase Chain Reaction (PCR) was used to confirm parasitaemia using P. falciparum MSP2 as a marker while Restriction Fragment Length Polymorphism (RFLP) was used to identify P. falciparum SP-resistance molecular markers at codons 51, 59, 108, 164 of dihydrofolate reductase (dhfr), and codons 437, 540, 581 and 431 of dihydropteorate synthetase (dhps) genes. The prevalence of malaria from the 410 pregnant women examined at first antenatal registration were 8.29% and 17.07% using RDT and microscopy, respectively (P < 0.05). MSP2 alleles of P. falciparum were confirmed in 43 (61.43%) cases of the microscopy result. Fourteen different MSP2 fragments of the two major allelic families: 3D7 and FC27 were obtained. The allelic frequencies were 52.9% and 15.7% for 3D7 and FC27, respectively, with overlap in 5 cases (P < 0.05). Multiplicity of infection was 1.31. Using RFLP, 47 (67.12%) samples showed polymorphism in at least one codon of Pfdhfr and Pfdhps genes. In the Pfdhfr gene, C59R and N51I mutations showed the highest (78.72%) and the least (23.4%) prevalence, respectively (P < 0.05). In the Pfdhps gene, A437G and K540E mutations showed the highest (44.68%) and the least (36.17%) prevalence respectively (P > 0.05). Single mutation of C59R in 10 (21.28%) cases was the most prevalent haplotype in the Pfdhfr/Pfdhps genes (P < 0.05). Mutation variations of Pfdhfr/Pfdhps identified were 15 (31.91%) single, 14 (29.79%) double, 13 (27.66%) triple and 5 (10.64%) quadruple with 5, 8, 6 and 3 unique haplotypes, respectively. The study recorded the presence of malaria parasites among the study participants. P. falciparum SP resistant genes were also detected and this may present a challenge in the usefulness of Intermittent Preventive Treatment (IPTp-SP) in pregnancy.

DOI 10.11648/j.ajbio.20200801.12
Published in American Journal of BioScience ( Volume 8, Issue 1, January 2020 )
Page(s) 6-14
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Intermittent Preventive Treatment, Sulphadoxine-Pyrimethamine, Plasmodium falciparum, Pregnant Women, Resistance Molecular Markers

References
[1] World Health Organization (2000). The African summit on roll back Malaria, Abuja Nigeria. Geneva. WHO/CDS/RBM/ WHO 2000.17.
[2] Desai, M., F. O. ter Kuile, F. Nosten, R. McGready, K. Asamoa, B. Brabin, and R. D. Newman (2007). Epidemiology and burden of malaria in pregnancy. Lancet Infectious Disease 7, 93–104.
[3] Triglia, T., J. G. Menting, C. Wilson, and A. F. Cowman (1997). Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proceedings of the National Academy of Science of the United States of America 94, 13944–13949.
[4] Moussilou, A., Y. Sissinto-savi de Tove, J. Doritchamou, A. J. Luty, A. Massougbodji, M. Alifrangis, P. Deloron, and N. Tuikue Ndam (2013). High rates of parasite recrudescence following intermittent preventive treatment with sulphadoxine-pyrimethamine during pregnancy in Benin. Malaria Journal 12, 195.
[5] Razak, M. R. M. A., U. R. Sastu, N. A. Norahmad, A. Abdul-Karim, A. Muhammad, P. K. Muniandy, J. Jelip, C. Rundi, M. Imwong, R. N. Mudin, and N. R. Abdullah (2016). Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia. PLoS One 11 (3), e0152415.
[6] Ikpa, T. F., K. K. Sha’a,. and I. K. Auta (2014). Molecular markers of sulfadoxine-pyrimethamine resistant malaria prior to intermittent preventive treatment among pregnancies in Makurdi, Nigeria. The International Journal of Biological and Chemical Sciences 8 (5), 1961-1968.
[7] Kublin, J. G., F. K. Dzinjalamala, D. D. Kamwendo, E. M. Malkin, J. F. Cortese, L. M. Martino, R. A. Mukadam, S. J. Rogerson, A. G. Lescano, M. E. Molyneux, P. A. Winstanley, P. Chimpeny, T. E. Taylor and C. V. Plowe (2002). Molecular markers for failure of sulphadoxine-pyrimethamineand chlorproguanil–Dapsone treatment of Plasmodium falciparum. Journal of Infectious Diseases 185, 380–388.
[8] Aribodor, D. N., O. C. Nwaorgu, C. I. Eneanya, I. Okoli, R. PukkilaWorley, and O. H. Etaga (2009). Association of low birth weight and placental malaria infection in Nigeria. The Journal of Infection in Developing Countries 3 (8), 620-623.
[9] Okogun, G. R. A, D. J. Jemikalajah, and F. C. Onyia (2010). Prevalence of malaria parasitemia among Human Immunodeficiency Virus (HIV) seropositive pregnant women in Kwale, Delta State. Nigerian Journal of Health and Biomedical Sciences 9 (2), 1595-8272.
[10] Delta State Development Performance Health Sector Report (2014). Objectives, Policies, Strategies, Initiatives/Programmes in the Health Sector. Delta State Development Performance chapter. United Nations Nigeria. Health Sector Report, 1991-2013. pp6.
[11] Ebong, O. O., C. A. Nwauche, I. H. Ogbuehi, I. N. Chijioke–Nwauche, C. T. Ezirim, R. E. Umoh, A. G. Afia, and P. Zara-kokpa (2015). Is this Evidence of Success in Malaria Prevention and Control Measures? Greener Journal of Medical Sciences 5 (1), 001-010.
[12] Aina, O., B. Akinsanya, B. Adewale, C. Agomo, M. Sulyman, and O. Rahman (2018). Prevalence of malaria in pregnant women attending antenatal clinic in Primary Health Centres in Lagos, South West, Nigeria. Journal of Advances in Medicine and Medical Research 25 (12), 1-9.
[13] Oyeyemi, T. O., A. F. Ogunlade, and I. O. Oyewole (2015). Comparative assessment of microscopy and rapid diagnostic test (RDT) as malaria diagnostic tools. Research Journal of Parasitology 10 (3), 120-126.
[14] Egbuche, C. M., C. B. Ukonze, I. J. Udofia, T. Okafor, K. C. Okoye, O. A. Chukwuzoba, and C. J. Obasi (2019). Comparative assessment of urine based RDT in malaria diagnosis during febrile and non-febrile conditions. Nigerian Journal of Parasitology 40 (1), 37–45.
[15] Ugah, U. I., M. N. Alo, J. O. Owolabi, O. D. Okata-Nwali, I. M. Ekejindu, N. Ibeh, and M. Okpara Elom (2017) Evaluation of the utility value of three diagnostic methods in the detection of malaria parasites in endemic area. Malaria Journal 16, 189.
[16] Soe, T. N., Y. Wu, M. W. Tun, X. Xu, Y. Hu, Y. Ruan, A. Y. N. Win, M. H. Nyunt, N. C. N. Mon, K. T. Han, K. M. Aye, J. Morris, P. Su, Z. Yang, M. P. Kyaw, and L. Cui (2017). Genetic diversity of Plasmodium falciparum populations in southeast and western Myanmar. Parasites and Vectors 10, 322.
[17] Some, A. F., T. Bazie, I. Zongo, R. S. Yerbanga, F. Nikiema, C. Neya, L. K. and J. B. Ouédraogo (2018). Plasmodium falciparum msp1 and msp2 genetic diversity and allele frequencies in parasites isolated from symptomatic malaria patients in Bobo-Dioulasso, Burkina Faso. Parasites and Vectors 11, 323.
[18] Sondo, P. K. Derra, T. Lefevre, S. Diallo-Nakanabo, Z. Tarnagda, O. Zampa, A. Kazienga, I. Valea, H. Sorgho, J. Ouedraogo, T. R. Guiguemde, and H. Tinto (2019). Genetically diverse Plasmodium falciparum infections, within-host competition and symptomatic malaria in humans. Scientific Reports 9 (127), 2045-2322.
[19] Brice, P. S., P. I. Mayengue, N. R. Fabien, and N. Mathieu (2019). Genetic diversity of Plasmodium falciparum infection among children with uncomplicated malaria living in Pointe-Noire, Republic of Congo. The Pan African Medical Journal 32, 183.
[20] Kidima, W. and G. Nkwengulila (2015). Plasmodium falciparum msp2 Genotypes and multiplicity of infections among children under five years with uncomplicated Malaria in Kibaha, Tanzania. Journal of Parasitology Research 2015, 1-6.
[21] Chen, J., J. Li, G. Zha, G., Huang, Z. Huang, D. Xie, X. Zhou, H. Mo, J. U. M. Eyi, R. A. Matesa, M. M. O. Obono, S. Li, X. Liu, and M. Lin (2018). Genetic diversity and allele frequencies of Plasmodium falciparum msp1 and msp2 in parasite isolates from Bioko Island, Equatorial Guinea. Malaria Journal 17, 458.
[22] Hoffmann, E. H., L. A. da Silveira, R. Tonhosolo, F. J. Pereira, W. L. Ribeiro, A. P. Tonon, F. Kawamoto, and M. U. Ferreira (2001). Geographical patterns of allelic diversity in the Plasmodium falciparum malaria-vaccine candidate, merozoite surface protein-2. Annals of Tropical Medicine and Parasitology 95, 117–132.
[23] Daniels, R., H. H. Chang, P. D. Sene, D. C. Park, D. E. Neafsey, S. F. Schaffner, E. J. Hamilton, A. K. Lukens, D. Van Tyne, S. Mboup, P. C. Sabeti, D. Ndiaye, D. F. Wirth, D. L. Hartl, and S. K. Volkman (2013). Genetic surveillance detects both clonal and epidemic transmission of malaria following enhanced intervention in Senegal. PloS one 8 (4), e60780.
[24] Atroosh, W. M., H. M. Al-Mekhlafi, M. A. Mahdy, R. Saif-Ali, A. M. Al-Mekhlafi, and J. Surin (2011). Genetic diversity of Plasmodium falciparum isolates from Pahang, Malaysia based on msp-1 and msp-2 genes. Parasite Vectors 4, 233.
[25] Nabet, C., S. Doumbo, F. Jeddi, S. Konaté, T. Manciulli, B. Fofana, C. L’Ollivier, A. Camara, S. Moore, S. Ranque, M. A. Théra, O. K. Doumbo, and R. Piarroux (2016). Genetic diversity of Plasmodium falciparum in human malaria cases in Mali. Malaria Journal 15, 353.
[26] Zhong, D., C. Koepfli, L. Cui, and G. Yan (2018). Molecular approaches to determine the multiplicity of Plasmodium infections. Malaria Journal 17, 172.
[27] Ekala, M. T., H. Jouin, F. Lekoulou, S. Issifou, O. Mercereau-Puijalon, and F. Ntoumi (2002). Plasmodium falciparum merozoite surface protein 1 (msp-1): genotyping and humoral responses to allele-specific variants. Acta Tropica 81, 33–46.
[28] Olasehinde, G. I., C. S. Yah, R. Singh, O. O. Ojuronbge, A. A. Ajayi, N. Valecha, A. O. Abolaji, and A. O. Adeyeba (2012). Genetic diversity of Plasmodium falciparum field isolates from south western Nigeria. African Health Sciences 12 (3), 355–361.
[29] Huang, B., F. Tuo, Y. Liang, W. Wu, G. Wu, S. Shiguang Huang, Q. Zhong, X. Su, H. Zhang, M. Li, A. Bacar, K. S. Abdallah, A. M. S. A. Mliva, Q. Wang, Z., Yang, S. Zheng, Q. Xu, J. Song, and C. Deng (2018). Temporal changes in genetic diversity of msp-1, msp-2, and msp-3 in Plasmodium falciparum isolates from Grande Comore Island after introduction of ACT. Malaria Journal 17, 83.
[30] Chaponda, E. B., D. Chandramohan, C. Michelo, S. Mharakurwa, J. Chipeta, and R. M. Chico (2015). High burden of malaria infection in pregnant women in a rural district of Zambia: a cross-sectional study. Malaria Journal 14, 380.
[31] Iriemenam, N. C., M. Shah, W. Gatei, A. M. van Eijk, J. Ayisi, S. Kariuki, J. V. Eng, S. O. Owino, A. A. Lal, Y. O. Omosun, K. Otieno, M. Desai, F. O. ter Kuile, B. Nahlen, J. Moore, M. J. Hamel, P. Ouma, L. Slutsker, and Y. P. Shi (2012). Temporal trends of sulphadoxine-pyrimethamine (SP) drug-resistance molecular markers in Plasmodium falciparum parasites from pregnant women in western Kenya. Malaria Journal 11, 134.
[32] Harrington, W. E., T. K. Mutabingwa, A. Muehlenbachs, B. Sorensen, M. C. Bolla, M. Fried, and P. E. Duffy (2009). Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proceedings of the National Academy of Sciences of the United States of America 106, 9027–9032.
[33] Iwaloku, B. A., S. O. Iwalokun, V. Adebodun, and M. Balogun (2015). Carriage of mutant dihydrofolate reductase and dihydropteroate synthase genes among Plasmodium falciparum isolates recovered from pregnant women with asymptomatic infection in Lagos, Nigeria. Medical and principles and practice 24, 436-443.
[34] Mbonye, A. K., J. Birungi, S. K. Yanow, S. Shokoples, S. Malamba, M. Alifrangis, and P. Magnussen (2015). Prevalence of Plasmodium falciparum resistance markers to sulfadoxine-pyrimethamine among pregnant women receiving intermittent preventive treatment for malaria in Uganda. Antimicrobial Agents and Chemotherapy 59, 5475–5482.
[35] Braun, V., E. Rempis, A. Schnack, S. Decker, J. Rubaihayo, N. M. Tumwesigye, S. Theuring, G. Harms, P. Busingye, and F. P. Mockenhaupt (2015). Lack of effect of intermittent preventive treatment for malaria in pregnancy and intense drug resistance in western Uganda. Malaria Journal 14 (1), 372.
[36] Tahita, M. C., H. Tinto, A. Erhart, A. Kazienga, R. Fitzhenry, C. VanOvermeir A. Rosanas-Urgell, J. Ouedraogo, R. T. Guiguemde, J. Van geertruyden, and U. D’Alessandro (2015). Prevalence of the dhfr and dhps mutations among pregnant women in Rural Burkina Faso five years after the introduction of intermittent preventive treatment with sulfadoxine–pyrimethamine. PLoS ONE 10 (9), e0137440.
[37] Abdullah, N. R., N. A. Norahmad, J. Jelip, L. H. Sulaiman, H. M. Sidek, Z. Ismail, and H. Noedl (2013). High prevalence of mutation in the Plasmodium falciparum dhfr and dhps genes in field isolates from Sabah, Northern Borneo. Malaria Journal 12, 198.
[38] Bamaga, O. A. A., M. A. K. Mahdy, and Y. A. L. Lim (2015). Frequencies distribution of dihydrofolate reductase and dihydropteroate synthetase mutant alleles associated with sulfadoxine–pyrimethamine resistance in Plasmodium falciparum population from Hadhramout Governorate, Yemen. Malaria Journal 14, 516.
[39] Jiang, T., J. Chen, H. Fu, K. Wu, Y. Yaao, J. U. M. Eyi, R. A. Matesa, M. M. O. Obono, W. Du, T. Tan, M. Lin, and J. Li (2019). High prevalence of Pfdhfr-Pfdhps quadruple mutations associated sulfadoxine-pyrimethamine resistance in Plasmodium falciparum isolates from Bioko Island, Equitorial Guinea. Malaria Journal 18, 101.
[40] Papa Mze, N., Y. D. Ndiaye, C. K. Diedhiou, S. Rahamatou, B. Dieye, R. F. Daniels, E. J. Hamilton, M. Diallo, K. Bei, D. F. Wirth, S. Mboup, S. K. Volkman, D. Ambroise, A. D. Ahouidi, and D. Ndiaye (2015). RDTs as a source of DNA to study Plasmodium falciparum drug resistance in isolates from Senegal and the Comoros Islands. Malaria Journal 14, 373.
[41] Hyde, J. E. (2008). Antifolate resistance in Africa and the 164-dollar question. Transactions of the Royal Society of Tropical Medicine and Hygiene 102, 301–303.
[42] Hyde, J. E. (1990). The dihydrofolate reductase-thymidylate synthase gene in the drug resistance of malaria parasites. Pharmacology and Therapeutics 48, 45-59.
[43] Bertin, G., V. Briand, D. Bonaventure, A. Carrieu, A. Massougbodji, M. Cot, and P. Deloron (2011). Molecular markers of resistance to sulphadoxine-pyrimethamine during intermittent preventive treatment of pregnant women in Benin. Malaria Journal 10, 196-210.
[44] Chauvin, P., S. Menard, X. Iriart, S. E. Nsango, M. T. Tchioffo, L. Abate, P. H. Awono-Ambéné, I. Morlais, and A. Berry (2015). Prevalence of Plasmodium falciparum parasites resistant to sulfadoxine/ pyrimethamine in pregnant women in Yaoundé, Cameroon: emergence of highly resistant pfdhfr/pfdhps alleles. Journal of Antimicrobial Chemotherapy 70, 2566–2571.
[45] Madanitsa, M., L. Kalilani, V. Mwapasa, A. M. van Eijk, C. Khairallah, D. Ali, C. Pace, J. Smedley, K. Thwai, B. Levitt, D. Wang, A. Kang’ombe, B. Faragher, S. M. Taylor, S. Meshnick, and F. O. ter Kuile (2016). Scheduled intermittent screening with rapid diagnostic tests and treatment with dihydroartemisinin-piperaquine versus intermittent preventive therapy with sulfadoxine-pyrimethamine for malaria in pregnancy in Malawi: An open-label randomized controlled trial. PLOS Medicine 13 (9), e1002124.
[46] WHO. (2013). Intermittent Preventive Treatment (IPT) of malaria in pregnancy. Evidence Review Group. World Health Organisation, Geneva, Switzerland.
[47] Oguike, M. C., C. O. Falade, E. Shu, G. Izehiuwa, I. G. Enato, I. Watila, E. S. Baba, J. Bruce, J., Webster, P. Hamade, S. Meek, D. Chandramohan, C. J. Sutherland, D. Warhurst, and C. Roper (2016). Molecular determinants of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum in Nigeria and the regional emergence of dhps 431V. International Journal for Parasitology: Drugs and Drug Resistance 6 (3), 220–229.
[48] Zakeri, S., M. S. Farahani, M. Afsharpad, M. Salehi, A. Raeisi, and N. D. Djadid (2009). High prevalence of the 437G mutation associated with sulfadoxine resistance among Plasmodium falciparum clinical isolates from Iran, three years after the introduction of sulfadoxine-pyrimethamine. International Journal of Infectious Diseases 14, 123-128.
[49] Juma, D. W., A. A. Omondi, L. Ingasia, B. Opot, A. Cheruiyot, R. Yeda, C. Okudo, J. Cheruiyot, P. Muiruri, B. Ngalah, L. J. Chebon, F. Eyase, J. Johnson, D. Wallace, W. D. Bulimo, M. Hoseah, H. M. Akala, B. Andagalu, and E. Kamau (2014). Trends in drug resistance codons in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase genes in Kenyan parasites from 2008 to 2012. Malaria Journal 13, 250.
[50] Siame, M. N. P., S. Mharakurwa, J. Chipeta, P. Thuma, and C. Michelo (2015). High prevalence of dhfr and dhps molecular markers in Plasmodium falciparum in pregnant women of Nchelenge district, Northern Zambia. Malaria Journal 14, 190.
[51] Ogouyèmi-Hounto, A., N. K., Ndam, D. K. Gazard, S. d’Almeida, L. Koussihoude, E. Ollo, C. Azagnandji, M. Bello, J. Chippaux and A. Massougbodji (2013). Prevalence of the molecular marker of Plasmodium falciparum resistance to chloroquine and sulphadoxine/ pyrimethamine in Benin seven years after the change of malaria treatment policy. Malaria Journal 12, 147.
[52] Tan, K. R., B. L. Katalenich, K. E. Mace, M. Nambozi, S. M. Taylor, S. R. Meshnick, R E. Wiegand, V. Chalwe, S. J. Filler, M. Kamuliwo, and A. S. Craig (2014). Efficacy of sulfadoxine-pyrimethamine for intermittent preventive treatment of malaria in pregnancy, Mansa, Zambia. Malaria Journal 13, 227.
[53] Naidoo, I. and C. Roper (2013). Mapping ‘partially resistant’, ‘fully resistant’, and ‘super resistant’ malaria. Trends in Parasitology 29, 505–515.
[54] Osarfo, J., H. Tagbor, P. Magnussen, and M. Alifrangis (2018). Molecular markers of Plasmodium falciparum drug resistance in parasitemic pregnant women in the middle forest belt of Ghana. The American Journal of Tropical Medicine and Hygiene 98 (6), 1714–1717.
[55] Voumbo-Matoumona, D. F., L. C. Kouna, M., Madamet, S. Maghendji-Nzondo, B. Pradines, and B. J. Lekana-Douki (2018). Prevalence of Plasmodium falciparum antimalarial drug resistance genes in Southeastern Gabon from 2011 to 2014. Infection and Drug Resistance 11, 1329–1338.
Cite This Article
  • APA Style

    Chiamaka Evan Achu, Obioma Chebechi Nwaorgu, Chukwudi Michael Egbuche, Dorothy Amuche Ezeagwuna, Olusola Ajibaye, et al. (2020). Frequency of Merozoite Surface Protein 2 (MSP2) Allelic Families and Sulphadoxine-Pyrimethamine (SP) Resistance Markers Among Pregnant Women in Delta State, Nigeria). American Journal of BioScience, 8(1), 6-14. https://doi.org/10.11648/j.ajbio.20200801.12

    Copy | Download

    ACS Style

    Chiamaka Evan Achu; Obioma Chebechi Nwaorgu; Chukwudi Michael Egbuche; Dorothy Amuche Ezeagwuna; Olusola Ajibaye, et al. Frequency of Merozoite Surface Protein 2 (MSP2) Allelic Families and Sulphadoxine-Pyrimethamine (SP) Resistance Markers Among Pregnant Women in Delta State, Nigeria). Am. J. BioScience 2020, 8(1), 6-14. doi: 10.11648/j.ajbio.20200801.12

    Copy | Download

    AMA Style

    Chiamaka Evan Achu, Obioma Chebechi Nwaorgu, Chukwudi Michael Egbuche, Dorothy Amuche Ezeagwuna, Olusola Ajibaye, et al. Frequency of Merozoite Surface Protein 2 (MSP2) Allelic Families and Sulphadoxine-Pyrimethamine (SP) Resistance Markers Among Pregnant Women in Delta State, Nigeria). Am J BioScience. 2020;8(1):6-14. doi: 10.11648/j.ajbio.20200801.12

    Copy | Download

  • @article{10.11648/j.ajbio.20200801.12,
      author = {Chiamaka Evan Achu and Obioma Chebechi Nwaorgu and Chukwudi Michael Egbuche and Dorothy Amuche Ezeagwuna and Olusola Ajibaye and Denis Nnanna Aribodor},
      title = {Frequency of Merozoite Surface Protein 2 (MSP2) Allelic Families and Sulphadoxine-Pyrimethamine (SP) Resistance Markers Among Pregnant Women in Delta State, Nigeria)},
      journal = {American Journal of BioScience},
      volume = {8},
      number = {1},
      pages = {6-14},
      doi = {10.11648/j.ajbio.20200801.12},
      url = {https://doi.org/10.11648/j.ajbio.20200801.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajbio.20200801.12},
      abstract = {Malaria in pregnancy is a public health problem and requires prophylactic treatment with Sulphadoxine–Pyrimethamine (SP) drug. However, the emergence and spread of SP-resistance P. falciparum parasite across Nigeria poses serious threat to the efficacy and effectiveness of this preventive intervention. This study aimed to determine the frequency of MSP2 allelic families and SP resistance molecular markers of P. falciparum among asymptomatic pregnant women in Asaba, Delta State. Rapid Diagnostic Test (RDT) and Microscopy were used to detect malaria parasite infection among the study participants. Polymerase Chain Reaction (PCR) was used to confirm parasitaemia using P. falciparum MSP2 as a marker while Restriction Fragment Length Polymorphism (RFLP) was used to identify P. falciparum SP-resistance molecular markers at codons 51, 59, 108, 164 of dihydrofolate reductase (dhfr), and codons 437, 540, 581 and 431 of dihydropteorate synthetase (dhps) genes. The prevalence of malaria from the 410 pregnant women examined at first antenatal registration were 8.29% and 17.07% using RDT and microscopy, respectively (P P. falciparum were confirmed in 43 (61.43%) cases of the microscopy result. Fourteen different MSP2 fragments of the two major allelic families: 3D7 and FC27 were obtained. The allelic frequencies were 52.9% and 15.7% for 3D7 and FC27, respectively, with overlap in 5 cases (P Pfdhfr and Pfdhps genes. In the Pfdhfr gene, C59R and N51I mutations showed the highest (78.72%) and the least (23.4%) prevalence, respectively (P Pfdhps gene, A437G and K540E mutations showed the highest (44.68%) and the least (36.17%) prevalence respectively (P > 0.05). Single mutation of C59R in 10 (21.28%) cases was the most prevalent haplotype in the Pfdhfr/Pfdhps genes (P Pfdhfr/Pfdhps identified were 15 (31.91%) single, 14 (29.79%) double, 13 (27.66%) triple and 5 (10.64%) quadruple with 5, 8, 6 and 3 unique haplotypes, respectively. The study recorded the presence of malaria parasites among the study participants. P. falciparum SP  resistant genes were also detected and this may present a challenge in the usefulness of Intermittent Preventive Treatment (IPTp-SP) in pregnancy.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Frequency of Merozoite Surface Protein 2 (MSP2) Allelic Families and Sulphadoxine-Pyrimethamine (SP) Resistance Markers Among Pregnant Women in Delta State, Nigeria)
    AU  - Chiamaka Evan Achu
    AU  - Obioma Chebechi Nwaorgu
    AU  - Chukwudi Michael Egbuche
    AU  - Dorothy Amuche Ezeagwuna
    AU  - Olusola Ajibaye
    AU  - Denis Nnanna Aribodor
    Y1  - 2020/03/17
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ajbio.20200801.12
    DO  - 10.11648/j.ajbio.20200801.12
    T2  - American Journal of BioScience
    JF  - American Journal of BioScience
    JO  - American Journal of BioScience
    SP  - 6
    EP  - 14
    PB  - Science Publishing Group
    SN  - 2330-0167
    UR  - https://doi.org/10.11648/j.ajbio.20200801.12
    AB  - Malaria in pregnancy is a public health problem and requires prophylactic treatment with Sulphadoxine–Pyrimethamine (SP) drug. However, the emergence and spread of SP-resistance P. falciparum parasite across Nigeria poses serious threat to the efficacy and effectiveness of this preventive intervention. This study aimed to determine the frequency of MSP2 allelic families and SP resistance molecular markers of P. falciparum among asymptomatic pregnant women in Asaba, Delta State. Rapid Diagnostic Test (RDT) and Microscopy were used to detect malaria parasite infection among the study participants. Polymerase Chain Reaction (PCR) was used to confirm parasitaemia using P. falciparum MSP2 as a marker while Restriction Fragment Length Polymorphism (RFLP) was used to identify P. falciparum SP-resistance molecular markers at codons 51, 59, 108, 164 of dihydrofolate reductase (dhfr), and codons 437, 540, 581 and 431 of dihydropteorate synthetase (dhps) genes. The prevalence of malaria from the 410 pregnant women examined at first antenatal registration were 8.29% and 17.07% using RDT and microscopy, respectively (P P. falciparum were confirmed in 43 (61.43%) cases of the microscopy result. Fourteen different MSP2 fragments of the two major allelic families: 3D7 and FC27 were obtained. The allelic frequencies were 52.9% and 15.7% for 3D7 and FC27, respectively, with overlap in 5 cases (P Pfdhfr and Pfdhps genes. In the Pfdhfr gene, C59R and N51I mutations showed the highest (78.72%) and the least (23.4%) prevalence, respectively (P Pfdhps gene, A437G and K540E mutations showed the highest (44.68%) and the least (36.17%) prevalence respectively (P > 0.05). Single mutation of C59R in 10 (21.28%) cases was the most prevalent haplotype in the Pfdhfr/Pfdhps genes (P Pfdhfr/Pfdhps identified were 15 (31.91%) single, 14 (29.79%) double, 13 (27.66%) triple and 5 (10.64%) quadruple with 5, 8, 6 and 3 unique haplotypes, respectively. The study recorded the presence of malaria parasites among the study participants. P. falciparum SP  resistant genes were also detected and this may present a challenge in the usefulness of Intermittent Preventive Treatment (IPTp-SP) in pregnancy.
    VL  - 8
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria

  • Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria

  • Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria

  • Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria; Department of Medical Laboratory Sciences, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria

  • Malaria Research Laboratory, Biochemistry Unit, Nigerian Institute of Medical Research, Lagos, Nigeria

  • Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria

  • Section