As an electrotechnology, electrocoagulation (EC) is founded on the uninterrupted exercise of an external electric field across specified semi-conductive electrodes. This technique may be viewed as a side of a large domain of biotechnological methods and perceived cost-effective and environmentally-friendly in terms of the less intensive application of non-renewable resources and elevated degrees of energetic performance. From this point of view, EC is an encouraging treating system to control several of microalgae's utilization restrictions. Using electric field-founded technologies may include upstream (i.e. electroporation for genetic transformation, inactivation of culture contaminants, and improvement of growth kinetics) and downstream processes (e.g. harvesting and extraction methods). This review gives a thorough information of the present situation of the explicit usage of such methods on microalgal biotechnology, also following tendencies and defies concerning expansions in EC to be used to microalgae manufacturing utilization. Like other electrotechnolgies, EC remains a viable process usable in microalgal biotechnology even if it is based on the destruction of the cells. However, more researches should be planned in the perspective of a large industrial usage of this electrochemical technique.
Published in | Applied Engineering (Volume 3, Issue 2) |
DOI | 10.11648/j.ae.20190302.12 |
Page(s) | 85-94 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Electrocoagulation (EC), Microalgal Biotechnology, Electric Field, Electrodes, Electrochemistry, Algae
[1] | D. Ghernaout, Environmental principles in the Holy Koran and the Sayings of the Prophet Muhammad, Am. J. Environ. Prot. 6 (2017) 75-79. |
[2] | P. G. Falkowski, J. A. Raven, Aquatic photosynthesis, Blackwell Science, Oxford, 1997. |
[3] | D. Ghernaout, B. Ghernaout, On the concept of the future drinking water treatment plant: Algae harvesting from the algal biomass for biodiesel production––A Review, Desalin. Water Treat. 49 (2012) 1-18. |
[4] | D. Ghernaout, B. Ghernaout, M. W. Naceur, Embodying the chemical water treatment in the green chemistry – A review, Desalination 271 (2011) 1-10. |
[5] | A. Bahadar, M. B. Khan, Progress in energy from microalgae: a review, Renew. Sust. Energ. Rev. 27 (2013) 128-148. |
[6] | R. E. Lee, Phycology, Cambridge University Press, New York, 1980. |
[7] | I. Priyadarshani, B. Rath, Commercial and industrial applications of microalgae – a review, J. Algal Biomass- Utln 3 (2012) 89-100. |
[8] | G. Dragone, B. Fernandes, A. A. Vicente, J. A. Teixeira, Third generation biofuels from microalgae, In: A. Méndez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology, Formatex, Badajoz, 2010, 1355-1366. |
[9] | W. Klinthong, Y.-H. Yang, C.-H. Huang, C.-S. Tan, A review: microalgae and their applications in CO2 capture and renewable energy, Aerosol Air Qual. Res. 15 (2015) 712-742. |
[10] | D. Ghernaout, The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation - A review, J. King Saud Univ. – Sci. 26 (2014) 169-180. |
[11] | P. Geada, V. Vasconcelos, A. Vicente, B. Fernandes, Microalgal biomass cultivation (Ch. 13), In: R. Rastogi, D. Madamwar, A. Pandey A (Eds.) Algal green chemistry: recent progress in biotechnology, Elsevier, Amsterdam, 2017, 257-284. |
[12] | P. Geada, R. Rodrigues, L. Loureiro, R. Pereira, B. Fernandes, J. A. Teixeira, V. Vasconcelos, A. A. Vicente, Electrotechnologies applied to microalgal biotechnology – Applications, techniques and future trends, Renew. Sust. Energ. Rev. 94 (2018) 656-668. |
[13] | T. A. Norton, M. Melkonian, R. A. Andersen, Algal biodiversity, Phycologia 35 (1996) 308-326. |
[14] | O. Pulz, W. Gross, Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol. 65 (2004) 635-648. |
[15] | G. N. A. Senhorinho, G. M. Ross, J. A. Scott, Cyanobacteria and eukaryotic microalgae as potential sources of antibiotics, Phycologia 54 (2015) 271-282. |
[16] | B.-H. Um, Y.-S. Kim, Review: a chance for Korea to advance algal-biodiesel technology, Ind. Eng. Chem. Res. 15 (2009) 1-7. |
[17] | J. Chen, Y. Wang, J. R. Benemann, X. Zhang, H. Hu, S. Qin, Microalgal industry in China: challenges and prospects, J. Appl. Phycol. 28 (2016) 715-725. |
[18] | J. W. Hong, S.-W. Jo, H.-S. Yoon, Research and development for algae-based technologies in Korea: a review of algae biofuel production, Photosynth. Res. 123 (2015) 297-303. |
[19] | R. Zhang, J. Chen, X. Zhang, Extraction of intracellular protein from Chlorella pyrenoidosa using a combination of ethanol soaking, enzyme digest, ultrasonication and homogenization techniques, Bioresour. Technol. 247 (2018) 267-272. |
[20] | W. Becker, Microalgae in human and animal nutrition. In: A. Richmond (Ed.), Handbook of microalgal culture: biotechnology and applied phycology, Blackwell Publishing Ltd., Oxford, 2004, 312-351. |
[21] | F. A. Pagnussatt, F. Spier, T. E. Bertolin, J. A. V. Costa, L. C. Gutkoski, Technological and nutritional assessment of dry pasta with oatmeal and the microalga Spirulina platensis, Braz. J. Food Technol. 17 (2014) 296-304. |
[22] | A.-V. Ursu, A. Marcati, T. Sayd, V. Sante-Lhoutellier, G. Djelveh, P. Michaud, Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris, Bioresour. Technol. 157 (2014) 134-139. |
[23] | J. A. D. Campo, M. García-González, M. G. Guerrero, Outdoor cultivation of microalgae for carotenoid production: current state and perspectives, Appl. Microbiol. Biotechnol. 74 (2007) 1163-1174. |
[24] | A. P. R. F. Canela, P. T. V. Rosa, M. O. M. Marques, M. A. A. Meireles, Supercritical fluid extraction of fatty acids and carotenoids from the microalgae Spirulina maxima, Ind. Eng. Chem. Res. 41 (2002) 3012-3018. |
[25] | L. Brennan, P. Owende, Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev. 14 (2010) 557-577. |
[26] | T. M. Mata, A. A. Martins, N. S. Caetano, Microalgae for biodiesel production and other applications: a review, Renew. Sust. Energ. Rev. 14 (2010) 217-232. |
[27] | B. D. Fernandes, A. Mota, J. A. Teixeira, A. A. Vicente, Continuous cultivation of photosynthetic microorganisms: approaches, applications and future trends, Biotechnol. Adv. 33 (2015) 1228-1245. |
[28] | B. D. Fernandes, A. Mota, A. Ferreira, G. Dragone, J. A. Teixeira, A. A. Vicente, Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation, Chem. Eng. Sci. 117 (2014) 445-454. |
[29] | B. D. Fernandes, G. M. Dragone, J. A. Teixeira, A. A. Vicente, Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content, Appl. Biochem. Biotechnol. 161 (2010) 218-226. |
[30] | M. Anjos, B. D. Fernandes, A. A. Vicente, J. A. Teixeira, G. Dragone, Optimization of CO2 bio-mitigation by Chlorella vulgaris, Bioresour. Technol. 139 (2013) 149-154. |
[31] | P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert, Commercial applications of microalgae, J. Biosci. Bioeng. 101 (2006) 87-96. |
[32] | S. A. Razzak, M. M. Hossain, R. A. Lucky, A. S. Bassi, H. Lasa, Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing – a review, Renew. Sust. Energ. Rev. 27 (2013) 622-653. |
[33] | B. Ghernaout, D. Ghernaout, A. Saiba, Algae and cyanotoxins removal by coagulation/flocculation: A review, Desalin. Water Treat. 20 (2010) 133-143. |
[34] | N.-H. Norsker, M. J. Barbosa, M. H. Vermuë, R. H. Wijffels, Microalgal production – a close look at the economics, Biotechnol. Adv. 29 (2011) 24-27. |
[35] | M. Vanthoor-Koopmans, R. H. Wijffels, M. J. Barbosa, M. H. M. Eppink, Biorefinery of microalgae for food and fuel, Bioresour. Technol. 135 (2013) 142-149. |
[36] | R. H. Wijffels, M. J. Barbosa, M. H. M. Eppink, Microalgae for the production of bulk chemicals and biofuels, Biofuels Bioprod. Bioref. 4 (2010) 287-295. |
[37] | C.-C. He, C.-Y. Hu, S.-L. Lo, Integrating chloride addition and ultrasonic processing with electrocoagulation to remove passivation layers and enhance phosphate removal, Sep. Purif. Technol. 201 (2018) 148-155. |
[38] | D. Ghernaout, Microorganisms’ electrochemical disinfection phenomena, EC Microbiol. 9 (2017) 160-169. |
[39] | D. Belhout, D. Ghernaout, S. Djezzar-Douakh, A. Kellil, Electrocoagulation of Ghrib dam’s water (Algeria) in batch using iron electrodes, Desalin. Water Treat. 16 (2010) 1-9. |
[40] | D. Ghernaout, B. Ghernaout, From chemical disinfection to electrodisinfection: The obligatory itinerary?, Desalin. Water Treat. 16 (2010) 156-175. |
[41] | D. Ghernaout, A. Badis, B. Ghernaout, A. Kellil, Application of electrocoagulation in Escherichia coli culture and two surface waters, Desalination 219 (2008) 118-125. |
[42] | M. Sakr, S. Liu, A comprehensive review on applications of ohmic heating (OH), Renew. Sust. Energ. Rev. 39 (2014) 262-269. |
[43] | C. M. Galanakis, Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges, Food Bioprod. Process. 91 (2013) 575-579. |
[44] | C. M. R. Rocha, Z. Genisheva, P. Ferreira-Santos, R. Rodrigues, A. A. Vicente, J. A. Teixeira, R. N. Pereira, Electric field-based technologies for valorization of bioresources, Bioresour. Technol. 254 (2018) 325-339. |
[45] | E. Puértolas, F. J. Barba, Electrotechnologies applied to valorization of by-products from food industry: main findings, energy and economic cost of their industrialization, Food Bioprod. Process. 100 (2016) 172-184. |
[46] | S. Sastry, Ohmic heating and moderate electric field processing, Food Sci. Technol. Int. 14 (2008) 419-422. |
[47] | S. Velizarov, Electric and magnetic fields in microbial biotechnology: possibilities, limitations, and perspectives, Electromagn. Biol. Med. 18 (1999) 185-212. |
[48] | T. Y. Tsong, Electroporation of cell membranes, Biophys. J. 60 (1991) 297-306. |
[49] | N. I. Lebovka, M. P. Kupchik, K. Sereda, E. Vorobiev, Electrostimulated thermal permeabilisation of potato tissues, Biosyst. Eng. 99 (2008) 76-80. |
[50] | P. K. Wong, C.-Y. Chen, T.-H. Wang, C.-M. Ho, Electrokinetic bioprocessor for concentrating cells and molecules, Anal. Chem. 76 (2004) 6908-6914. |
[51] | M. Coustets, V. Joubert-Durigneux, J. Hérault, B. Schoefs, V. Blanckaert, J.-P. Garnier, J. Teissié, Optimization of protein electroextraction from microalgae by a flow process, Bioelectrochemistry 103 (2015) 74-81. |
[52] | D. Ghernaout, M. W. Naceur, B. Ghernaout, A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflotation, Desalin. Water Treat. 28 (2011) 287-320. |
[53] | G. P. 't Lam, P. R. Postma, D. A. Fernandes, R. A. H. Timmermans, M. H. Vermuë, M. J. Barbosa, M. H. M. Eppink, R. H. Wijffels, G. Olivieri, Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans, Algal Res. 24 (2017) 181-187. |
[54] | J. M. Martínez, E. Luengo, G. Saldaña, I. Álvarez, J. Raso, C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis, Food Res. Intern. 99 (2017) 1042-1047. |
[55] | C. H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, 2nd Ed., Wiley-VCH, Weinheim, 2007. |
[56] | D. Ghernaout, Advanced oxidation phenomena in electrocoagulation process: A myth or a reality?, Desalin. Water Treat. 51 (2013) 7536-7554. |
[57] | R. V. Pearsall, R. L. Connely, M. E. Fountain, C. S. Hearn, M. D. Werst, R. E. Hebner, E. F. Kelley, Electrically dewatering microalgae, IEEE Trans. Dielectr. Electr. Insul. 18 (2011) 1578-1583. |
[58] | D. Ghernaout, Greening electrocoagulation process for disinfecting water, Appl. Eng. 3 (2019) 27-31. |
[59] | D. Ghernaout, A. Alghamdi, B. Ghernaout, Microorganisms’ killing: Chemical disinfection vs. electrodisinfection, Appl. Eng. (2019) 13-19. |
[60] | D. Ghernaout, M. Aichouni, M. Touahmia, Mechanistic insight into disinfection by electrocoagulation - A review, Desalin. Water Treat. 141 (2019) 68-81. |
[61] | D. Ghernaout, M. Touahmia, M. Aichouni, Disinfecting water: Electrocoagulation as an efficient process, Appl. Eng. 3 (2019) 1-12. |
[62] | D. Ghernaout, The Holy Koran Revelation: Iron is a “sent down” metal, Am. J. Environ. Prot. 6 (2017) 101-104. |
[63] | A. Guldhe, R. Misra, P. Singh, I. Rawat, F. Bux, An innovative electrochemical process to alleviate the challenges for harvesting of small size microalgae by using nonsacrificial carbon electrodes, Algal Res. 19 (2016) 292-298. |
[64] | D. Ghernaout, B. Ghernaout, Sweep flocculation as a second form of charge neutralisation – A review, Desalin. Water Treat. 44 (2012) 15-28. |
[65] | D. Ghernaout, Electrocoagulation process: Achievements and green perspectives, Colloid Surface Sci. 3 (2018) 1-5. |
[66] | Y. Gong, H. Hu, Y. Gao, X. Xu, H. Gao, Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects, J. Ind. Microbiol. Biotechnol. 38 (2011) 1879-1890. |
[67] | R. Radakovits, R. E. Jinkerson, A. Darzins, M. C. Posewitz, Genetic engineering of algae for enhanced biofuel production, Eukaryot. Cell. 9 (2010) 486-501. |
[68] | D. Simionato, S. Basso, G. M. Giacometti, T. Morosinotto, Optimization of light use efficiency for biofuel production in algae, Biophys. Chem. 182 (2013) 71-78. |
[69] | I. Michalak, K. Chojnacka, Algae as production systems of bioactive compounds, Eng. Life Sci. 15 (2015) 160-176. |
[70] | S. Rosales-Mendoza, L. M. T. Paz-Maldonado, R. E. Soria-Guerra, Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives, Plant. Cell. Rep. 31 (2012) 479-494. |
[71] | M. A. Kempkes, Pulsed electric fields for algal extraction and predator control. In: D. Miklavcic (Ed.), Handbook of electroporation, Springer International Publishing, Cham, 2016, p. 1-16. |
[72] | M. Goettel, C. Eing, C. Gusbeth, R. Straessner, W. Frey, Pulsed electric field assisted extraction of intracellular valuables from microalgae, Algal Res. 2 (2013) 401-408. |
[73] | D. Rego, L. M. Redondo, V. Geraldes, L. Costa, J. Navalho, M. T. Pereira, Control of predators in industrial scale microalgae cultures with pulsed electric fields, Bioelectrochemistry 103 (2015) 60-64. |
[74] | R. W. Hunt, A. Zavalin, A. Bhatnagar, S. Chinnasamy, K. C. Das, Electromagnetic biostimulation of living cultures for biotechnology, biofuel and bioenergy applications, Int. J. Mol. Sci. 10 (2009) 4515-4558. |
[75] | L. Loghavi, S. K. Sastry, A. E. Youssef, Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus, Biotechnol. Prog. 25 (2009) 85-94. |
[76] | I. Castro, C. Oliveira, L. Domingues, J. A. Teixeira, A. A. Vicente, The effect of the electric field on lag phase, β-galactosidase production and plasmid stability of a recombinant Saccharomyces cerevisiae strain growing on lactose, Food Bioprocess. Tech. 5 (2012) 3014-3020. |
[77] | J. R. Mattar, M. F. Turk, M. Nonus, N. I. Lebovka, H. E. Zakhem, E. Vorobiev, S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments, Bioelectrochemistry 103 (2015) 92-97. |
[78] | R. Misra, A. Guldhe, P. Singh, I. Rawat, F. Bux, Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: a sustainable approach for biodiesel production, Chem. Eng. J. 255 (2014) 327-333. |
[79] | M. Al hattab, A. Ghaly, A. Hammouda, Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis, J. Fundam. Renew. Energ. Appl. 5 (2015) 154, doi: 10.4172/20904541.1000154. |
[80] | C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, J.-S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review, Bioresour. Technol. 102 (2011) 71-81. |
[81] | A. Silve, C. B. Kian, I. Papachristou, C. Kubisch, N. Nazarova, R. Wustner, K. Leber, R. Strassner, W. Frey, Incubation time after pulsed electric field treatment of microalgae enhances the efficiency of extraction processes and enables the reduction of specific treatment energy, Bioresour. Technol. 269 (2018) 179-187. |
[82] | L. Christenson, R. Sims, Production and harvesting of microalgae for wastewater treatment, biofuels and bioproducts, Biotechnol. Adv. 29 (2011) 686-702. |
[83] | Z. Wu, Y. Zhu, W. Huang, C. Zhang, T. Li, Y. Zhang, A. Li, Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium, Bioresour. Technol. 110 (2012) 496-502. |
[84] | D. Ghernaout, S. Moulay, N. Ait Messaoudene, M. Aichouni, M. W. Naceur, A. Boucherit, Coagulation and chlorination of NOM and algae in water treatment: A review, Intern. J. Environ. Monit. Analy. 2 (2014) 23-34. |
[85] | A. K. Lee, D. M. Lewis, P. J. Ashman, Harvesting of marine microalgae by electroflocculation: The energetics, plant design, and economics, Appl. Energ. 108 (2013) 45-53. |
[86] | C. Bruguera-Casamada, R. M. Araujo, E. Brillas, I. Sirés, Advantages of electro-Fenton over electrocoagulation for disinfection of dairy wastewater, Chem. Eng. J., https://doi.org/10.1016/j.cej.2018.09.136. |
[87] | D. Ghernaout, M. W. Naceur, Ferrate (VI): In situ generation and water treatment – A review, Desalin. Water Treat. 30 (2011) 319-332. |
[88] | K. Sardari, J. Askegaard, Y.-H. Chiao, S. Darvishmanesh, M. Kamaz, S. R. Wickramasinghe, Electrocoagulation followed by ultrafiltration for treating poultry processing wastewater, J. Environ. Chem. Eng. 6 (2018) 4937-4944. |
[89] | D. Ghernaout, C. Benblidia, F. Khemici, Microalgae removal from Ghrib Dam (Ain Defla, Algeria) water by electroflotation using stainless steel electrodes, Desalin. Water Treat. 54 (2015) 3328-3337. |
[90] | S. Gao, M. Du, J. Tian, J. Yang, J. Yang, F. Ma, J. Nan, Effects of chloride ions on electrocoagulation-flotation process with aluminum electrodes for algae removal, J. Hazard. Mater. 182 (2010) 827-834. |
[91] | C. G. Alfafara, K. Nakano, N. Nomura, T. lgarashi, M. Matsumura, Operating and scale-up factors for the electrolytic removal of algae from eutrophied lakewater, J. Chem. Technol. Biotechnol. 77 (2002) 871-876. |
[92] | G. H. Azarian, A. R. Mesdaghinia, F. Vaezi, Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant, Iran J. Public Health 36 (2007) 57-64. |
[93] | E. Poelman, N. D. Pauw, B. Jeurissen, Potential of electrolytic flocculation for recovery of microalgae, Resour. Conserv. Recycl. 19 (1997) 1-10. |
[94] | P. Sridhar, C. Namasivayam, G. Prabharan, Algae flocculation in reservoir water, Biotechnol. Bioeng. 32 (1988) 345-347. |
[95] | J. Kim, B.-G. Ryu, B.-K. Kim, J.-I. Han, J.-W. Yang, Continuous microalgae recovery using electrolysis with polarity exchange, Bioresour. Technol. 111 (2012) 268-275. |
[96] | D. Ghernaout, M. W. Naceur, A. Aouabed, On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment, Desalination 270 (2011) 9-22. |
[97] | D. Ghernaout, A. I. Al-Ghonamy, N. Ait Messaoudene, M. Aichouni, M. W. Naceur, F. Z. Benchelighem, A. Boucherit, Electrocoagulation of Direct Brown 2 (DB) and BF Cibacete Blue (CB) using aluminum electrodes, Sep. Sci. Technol. 50 (2015) 1413-1420. |
[98] | A. Zenouzi, B. Ghobadian, M. A. Hejazi, P. Rahnemoon, Harvesting of microalgae Dunaliella salina using electroflocculation, J. Agr. Sci. Technol. 15 (2013) 879-888. |
APA Style
Djamel Ghernaout. (2019). Electrocoagulation Process for Microalgal Biotechnology - A Review. Applied Engineering, 3(2), 85-94. https://doi.org/10.11648/j.ae.20190302.12
ACS Style
Djamel Ghernaout. Electrocoagulation Process for Microalgal Biotechnology - A Review. Appl. Eng. 2019, 3(2), 85-94. doi: 10.11648/j.ae.20190302.12
@article{10.11648/j.ae.20190302.12, author = {Djamel Ghernaout}, title = {Electrocoagulation Process for Microalgal Biotechnology - A Review}, journal = {Applied Engineering}, volume = {3}, number = {2}, pages = {85-94}, doi = {10.11648/j.ae.20190302.12}, url = {https://doi.org/10.11648/j.ae.20190302.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ae.20190302.12}, abstract = {As an electrotechnology, electrocoagulation (EC) is founded on the uninterrupted exercise of an external electric field across specified semi-conductive electrodes. This technique may be viewed as a side of a large domain of biotechnological methods and perceived cost-effective and environmentally-friendly in terms of the less intensive application of non-renewable resources and elevated degrees of energetic performance. From this point of view, EC is an encouraging treating system to control several of microalgae's utilization restrictions. Using electric field-founded technologies may include upstream (i.e. electroporation for genetic transformation, inactivation of culture contaminants, and improvement of growth kinetics) and downstream processes (e.g. harvesting and extraction methods). This review gives a thorough information of the present situation of the explicit usage of such methods on microalgal biotechnology, also following tendencies and defies concerning expansions in EC to be used to microalgae manufacturing utilization. Like other electrotechnolgies, EC remains a viable process usable in microalgal biotechnology even if it is based on the destruction of the cells. However, more researches should be planned in the perspective of a large industrial usage of this electrochemical technique.}, year = {2019} }
TY - JOUR T1 - Electrocoagulation Process for Microalgal Biotechnology - A Review AU - Djamel Ghernaout Y1 - 2019/08/05 PY - 2019 N1 - https://doi.org/10.11648/j.ae.20190302.12 DO - 10.11648/j.ae.20190302.12 T2 - Applied Engineering JF - Applied Engineering JO - Applied Engineering SP - 85 EP - 94 PB - Science Publishing Group SN - 2994-7456 UR - https://doi.org/10.11648/j.ae.20190302.12 AB - As an electrotechnology, electrocoagulation (EC) is founded on the uninterrupted exercise of an external electric field across specified semi-conductive electrodes. This technique may be viewed as a side of a large domain of biotechnological methods and perceived cost-effective and environmentally-friendly in terms of the less intensive application of non-renewable resources and elevated degrees of energetic performance. From this point of view, EC is an encouraging treating system to control several of microalgae's utilization restrictions. Using electric field-founded technologies may include upstream (i.e. electroporation for genetic transformation, inactivation of culture contaminants, and improvement of growth kinetics) and downstream processes (e.g. harvesting and extraction methods). This review gives a thorough information of the present situation of the explicit usage of such methods on microalgal biotechnology, also following tendencies and defies concerning expansions in EC to be used to microalgae manufacturing utilization. Like other electrotechnolgies, EC remains a viable process usable in microalgal biotechnology even if it is based on the destruction of the cells. However, more researches should be planned in the perspective of a large industrial usage of this electrochemical technique. VL - 3 IS - 2 ER -