The concept of the W.E.S (Wood-Energy-Sanitation) for raising awareness among populations far from the distribution networks of drinking water is established. The process of decontaminating filter columns made up of natural charcoal (NC) as porous non-expansive absorbent/adsorbent materials such as pozzolan (Pz) is experienced. The contribution of the NC to the filtering power of the Fe°-based filters, whose decontamination involves the electrochemical oxidation processes of Fe°, and corrosion products (CPs) that can cause a blockage of the reactive surface is studied. To do this, seven systems were tested with reactive zones (RZ) respectively consisting of (1) C (pure NC), (2) Pz (pure Pozzolan), (3) Fe°/C (iron/NC), (4) Fe°/Pz (iron/Pozzolan), (5) Fe°/S/C (Iron/Sand/NC), (6) Fe°/S/Pz (Iron/Sand/Pozzolan), (7) Fe°/S/Pz/C (Iron/Sand/Pozzolan/NC). OM (orange methyl) of 2 mg/L concentration was used as operative indicator. The experiments lasted 40 days per device. Performance parameters such as pH, residual iron, OM discoloration and flow rate were measured. As a result, it appears that the NC alone or associated in the Fe°/C, Fe°/S/C devices has a better filtering power than the Pz. The combination of NC and Pz in the same Fe°/S/Pz/C device improves strikingly the results, such as Fe°/S/Pz/C > Fe°/S/C > Fe°/S/Pz > Fe°/C > Fe°/Pz > C > Pz. Combining two non-expansive porous materials in the RZ stabilizes the Fe°/S/Pz/C-filter and improves its lifespan.
Published in | American Journal of Applied Chemistry (Volume 10, Issue 1) |
DOI | 10.11648/j.ajac.20221001.14 |
Page(s) | 28-37 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Aqueous Corrosion, Fe°-bed Filters, Natural Charcoal, Orange Methyl, Pozzolan, Sand, Zero-valent Iron
[1] | Schure, J., Mariem, J. L., de Wasseige, C., Drigo, R.., Salbitano, F., Dirou, S., & Nkoua, M. (2012). Contribution of Wood-Energy to meeting the energy needs of people of Central Africa: Perspectives for sustainable management of the available resources. Chap. 5 p. 109. http://doi.org/10.2788/48830 |
[2] | FAO (2008). Les forêts et Energie ((http://www.fao.org/docrep/010/i0139f/i01 39f00. htm)) |
[3] | WHO (2006). Environment factors cause 24% of diseases, http://www.futura-sciences.com |
[4] | Mpakam, H. G., Kamgang Kabeyne, B. V., Kouam Kenmogne, G. R., Tamo Tatietse, & Ekodeck, G. E. (2006). Access to drinking water and sanitation in cities in developing countries: the case of Bafoussam (Cameroon), VertigO-la revue électronique des sciences de l’environnement, 7, p. 2 http://doi.org/10. 4000/vertigo.2377 |
[5] | Noubactep, C., Makota, S., Nanseu-Njiki, C. P., Ebelle, T. C., Nassi, A., Tchatchueng, J. B., Benguellah, B. L., Woafo, P., & Njau, K. N. (2018). Affordable safe drinking water for the whole word: A coming reality. Researchgate, on 01 February. http://www. researchgate.net/publication/322855761 |
[6] | Rahman, M. A., Karmakar, S., Salama, H., Gactha-Bandjun, N., Btatkeu-K, B. D., & Noubactep, C. (2013). Optimising the design of Fe°-based filtration systems for water treatment: The suitability of porous iron composites. J. Appl. Solut. Chem. Model. 2: 165–177. |
[7] | Ebelle, T. C., Makota, S., Tepong-Tsindé, R., Nassi, A., & Noubactep, C. (August 2016). Metallic iron and the dialogue of the deaf. Fres. Environ. Bull. 28 (11A): 8331-8340. http://www.researchgate. net/ publication/305986624 |
[8] | Makota, S., Ndé-Tchoupé, A. I., Mwakabona, H. T., Tepong-Tsindé, R., Noubactep, C., Nassi, A., & Njau, K. N. (2017). Metallic iron for water treatment: leaving the valley of confusion. Appl. Water Sci. 7: 4177-4196. http://doi.org/10.1007/s13201 -017-0601-x |
[9] | Noubactep, C., Makota, S., & Randyopadhyay, A. (2017). Rescuing Fe° remediation research from its systemic flaws. Res. Rev. Insights. 1 (4): 1-8. http://doi:10.15761/RRI.1000119 |
[10] | Mitchell, G., Poole, P., & Segrove, H. (1955). Adsorption of Methylene Blue by High-Silica Sands. Nature 176, 1025-1026. |
[11] | Iler, R. (1979). The Chemistry of Silica Wiley Intersci. Public. 35 pp. New York, USA. |
[12] | Wilkin, R., Puls, R., & Sewell, G. (2003). Long-term performance of permeable reactive barriers using zero-valent iron: geochemical and microbiological effects, Ground Water 41, 493-503. https://doi.org/10.1111/j.17456584.2003.tb02383.x |
[13] | Henderson, A. D., & Demond, A. H. (2007). Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ. Eng. Sci. 24: 401-423 https://doi.org/10.1089/ees. 2006.0071 |
[14] | Miyajima, K., & Noubactep, C. (2012). Effects of Mixing Granular Iron with Sand on the Efficiency of Methylene Blue Discoloration. Chem. Eng. J. 433–438. |
[15] | Btatkeu, K., Miyajima, K., Noubactep, C., & Caré, S. (2013). Testing the suitability of metallic iron for environmental remediation: discoloration of methylene blue in column studies. Chem. Eng. J. 215-216, 959–968. https://dx.doi.org/10.1016/j.cej. 2012.11.072 |
[16] | Ndé-Tchoupé, A. I., Makota, S., Nassi, A., Rui, H., & Noubactep, C. (2018). The suitability of pozzolan as admixing aggregate for Fe°-Based Filters. Water. 10: 417. DOI: 10.3390/w10040417. |
[17] | Dron, R., (1975). Les pouzzolanes et la pouzzolanicité. Revue des matériaux de construction n° 692, 27-30 (In French). |
[18] | Sieliechi, J. M., Lartiges, B. S., Ndi, S. K. Kamga, R., & Kayem, G. J. (2012). Mobilization of heavy metal from natural pozzolan by humic acid: implications for water and environment, Int. J Environ. 2: 11-15. |
[19] | Billong, N., Chinje Melo, U., Njopwouo, D., Louvet, F., & Bonnet, J. P. (2013). Physicochemical characteristics of some Cameroonian pozzolans for use in sustainable cement like materials. Materials Sci. Appl. 4: 14–21. http://doi.10.4236/msa.2013.41003 |
[20] | Kofa, G. P., NdiKoungou, S., Kayem, G. J., & Kamga, R. (2015). Adsorption of arsenic by natural pozzolan in a fixed bed: determination of operating conditions and modeling. J. Water Process Eng. 6: 166–173 https://doi.org/10.1016/j.jwpe.2015.04.006 |
[21] | Suzanne Makota, S. N, Nguemo Wekam, E., Dipita Kolye, E. Y. H., & Nassi, A. (2022). Ranges and fitting ratios of natural aggregates for a sustainable and effective Fe°/Sand/Pozzolan ternary device using orange methyl. American Journal of Applied Chemistry Submit. |
[22] | Dejonc, E., & Rotschild, J. (1894). 3e édition p. 63- 64. |
[23] | Wigmans, T. (1989). Carbon, 27 (1), 13-22 http://doi.org/10.1016/0008.6223(89)90152.8. |
[24] | Louppe, D. (2014). CIRAD UPR BSEP http // ur-bsep.cirad.fr/ Campus international de Baillarguet 34398 Montpellier Cedex 5 France dominiquelouppe@cirad.fr |
[25] | LaSIE (Laboratoire des Sciences de l’Ingénieur pour L’environnement) (2014). Pôle Sciences et Technologie Avenue Michel Crépeau 17042 LA ROCHELLE CEDEX (In French). |
[26] | Noubactep, C. (2009). Characterizing the discoloration of methylene blue in Feo/H2O systems. J. Hazard. Mater. 166, 79–87. |
[27] | Anderson, W. (1886). On the purification of water by agitation with iron and by sand filtration. Journal of the Society for Arts 35 (1775), 29–38. |
[28] | Devonshire, E. (1890). The purification of water by means of metallic iron. Journal of the Franklin Institute 129, 449-461. |
[29] | Al-heetimi, D., Dawood, A., Khalaf, Q., & Himdan, T. (2012). Removal of methyl orange from aqueous solutions by Iraqi bentonite adsorbent. Ibn Al-Haitham J. for Pure and Appl. Sci. 1, Vol. 25. |
[30] | Phukan, M. (2015). Characterizing the Fe°/sand system by the extent of dye discoloration. Freiberg Online Geosci. 40: 70. https://doi.org/10.1016/j.cej.2014.08.013 |
[31] | Miyajima, K. (2012). Optimizing the design of metallic iron filters for water treatment. Freiberg Online Geosci. 32: 107. |
[32] | Norme NF T 90-017 (1982). Dosage du fer, Méthode Spectrométrique à la phénanthroline-1,10, AFNOR Paris (In French). |
[33] | Rejsek, F. (2002). Analyse des eaux – Aspects réglementaires et techniques p. 66 (In French). |
[34] | Standard Methods for the examination of water, 19th edition, sheet 3-68. |
[35] | Centre International de l’eau et de l’assainissement IRC/ (1991). la filtration lente sur sable pour approvisionnement en eau potable (In French). |
[36] | Fortune, W. B., & Mellon, M. G. (Ed. 1938). Determination of iron with o-phenanthroline: A spectrophotometric study. Ind. Eng. Chem. Anal. 10: 60-64. |
[37] | Comba, S., Di Molfetta, A., & Sethi, R. (2011). A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut. 215: 595-607. |
[38] | Pilling, N. B., & Bedworth, R. E. (1923). The oxidation of metals at high temperatures. J. Inst. Metals. 29: 529, 591. |
[39] | Schwertmann, U. (1991). Solubility and dissolution of iron oxides. Plants and Soil. 130: 1-25. |
[40] | Crawford, R. J., Harding, I. H., & Mainwaring, D E. (1993a). Adsorption and coprecipitation of single heavy metal ions onto the hydrated oxides of iron and chromium. Langmuir. 9: 3050-3056. |
[41] | Brown Jr., G. E., Henrich, V. E., Casey, W. H., Clark, D. L., Eggleston, C., Felmy, A., Googman, D. W., Grātzel, M., Maciel, G., McCarthy, M. I., Nealson, K. H., Sverjensky, D. A., Toney, M. F., & Zachara, J. M. (1999). Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99: 77-174. |
[42] | Casentini, B., Falcione, F. T., Amalfitano, S., Fazi, S., & Rossetti, S. (2016). Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale. Water Res. 106: 135-145. https://doi.org/10.1016/j.waters.2016.09.057 |
[43] | Noubactep, C. (2013a) Relevant reducing agents in remediation Fe°/H2O systems Clean-Soil Air Water. 41: 493-502. https://doi.org/10.1002/clen. 201200406 |
[44] | Gatcha-Bandjun, N., Noubactep, C., & Loura Mbenguela, B. (2017). Mitigation of contamination in effluents by metallic iron: The role of iron corrosion products. Environ. Technol. Innov. 8: 71-83. https://doi.org/10.1016/j.eli.2017.05.002 |
[45] | Detay, M. (1993). Le forage de l’eau. Ingénierie de l’environnement p. 231-242, (Eds) Masson (In French). |
[46] | Nesic, S. (2007). Key issues related to modeling of internal corrosion of oil and gas pipelines –A review: Corros. Sci. 49: 4308-4338. DOI: 10.1016/j. corsci.2007.06.006. |
[47] | Lazzari, L. (2008). General aspects of corrosion. Chapter 9.1: vol. V. Encyclopedia of hydrocarbons, Istituto Enciclopedia Italiana, Rome, Italy. |
[48] | Crawford, R. J., Harding, I. H., & Mainwaring, D. E. (1993a). Adsorption and co precipitation of multiple heavy metal ions onto the hydrated oxides of iron and chromium. Langmuir 9: 3057-3062. |
[49] | Detay, M. (1993). Le forage de l’eau. Ingénierie de l’environnement p. 250-259, (Eds) Masson (In French). |
[50] | Nguila, I. G., Petrissans, M., Lambert, J., Ehrhardt, J. J., & Gérardin, P. (2006). XPS characterization of wood chemical composition after heat-treatment. Surface and Interface Analysis 38 (10) 1336-1342. |
[51] | Saha Tchinda, J. B. (2015). Wood and fiber Science. PhD thesis. University of Lorraine French (In French) pp 20-56. |
[52] | Wageningen, (2008). Medicinal plants 1, Prota Foundation, resources from tropical Africa Backhuys publishers/CTA, Pays-Bas, 11 (1): 276-281. |
[53] | Nguelefack, P. M. E., Ngu, B. K., Atchade, A., Dimo, T., Tsabang, N., & Mbafor, T. J. (2005). Phytochemical composition and in vitro effect of ethyl acetate bark extract of Distemonanthus benthamianus Baillon (Caesalpiniaceae) on Staphylococcus aureus and Streptococcus agalactiae. Cameroon Journal of Experimental Biology 1 (1): 50-53. |
[54] | Jansen, P. C. M., (2005). Pterocarpus soyauxii Taub. In: Louppe, D., Oteng-Amoako, A. A. & Brink, M. (Ed.) Prota 7 (1): Timbers / Bois d’oeuvre 1. PROTA, Wageningen, Pays Bas. |
[55] | Gbamele, K. S., Atheba, G. P., Dongui, B. K., Drogui, P., Robert, D., Kra, D. O., Konan, S., De Bouanzi, G. G. M., & Trokourey, A. (2016). Contribution à l’étude de quatre charbons activés à partir des coques des noix coco. Afrique SCIENCE 12 (5) 229-245. |
[56] | Sjostrom Eero, (1993). Wood Chemistry-Fundamentals and Applications. San Diego, USA, Academic Press. 2nd Ed., pp 51-108. |
[57] | Mellouk, A. (2007). Extraction of volatile compounds from wood by Instant Controlled Relaxation (ICR): Industrial recovery of solid extracts and residues. PhD thesis Specialization: Genie of processes University of La Rochelle French. (In French) pp 152. |
[58] | Mounguengui, W. S. (2008). HPLC characterization of markers to predict the evolution of certain macroscopic properties of wood during different degradation processes. PhD thesis University of Henri Poincare, Nancy-I French (In French). pp 229. |
[59] | Visscher, J. T., Paramasivam, R., Raman, A., & Heijnen, H. A. (1991). (IRC) International Water and Sanitation Center / Slow filtration on sand for drinking water supply (In French) pp 51. |
[60] | Noubactep, C., & Caré, S. (2010). Dimensioning metallic iron beds for efficient contaminant removal. Chem. Eng. J. 163: 454–460. |
[61] | Noubactep, C., Caré, S., Togue-Kamga, F., Schöner, A., & Woafo, P. (2010). Extending service life of household water filters by mixing metallic iron with sand. Clean – Soil, Air, Water 38: 951-959. |
[62] | Li, S., Heijman, S., Verberk, J., & Van Dijk, J. (2009). An innovative treatment concept for future drinking water production: Fluidized ion exchange – Ultrafiltration nanofiltration – Granular activated carbon filtration, Drink. Water Eng. Sci. 2, 41–47. |
[63] | Nasseri, E., Ndé-Tchoupé, A. I., Mwakabona, H. T., Nanseu-Njiki, C. P., Noubactep, C., Njau, K. N., Wydra, K. D. (2017). Making Fe°-based filters a universal solution for safe drinking water provision. Sustainability, 9, 1224. |
[64] | Noubactep, C. (2009). An analysis of the evolution of reactive species in Fe°/H2O systems. J. Hazard Mater, 168, 1626-1631. |
[65] | Kumar, R., Sinha, A. (2017). Biphasic reduction model for predicting the impacts of dye-bath constituents on the reduction of tris - azo dye Direct Green-1 by zero-valent (Fe°). J. Environ. Sci. (China), 52, 160-169. |
[66] | Guan, X., Sun, Y., Qin, H., Li, J., Lo, I. M. C., He, D., & Dong, H. (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014). Water Res., 75, 224-248. |
[67] | O’Hannesin, S. F., & Gillham, R. W. (1998). Long-term performance of an in situ “iron wall” for remediation of VOCs. Ground Water, 36, 164-170. |
[68] | Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Res., 43, 5243–5251. |
[69] | Gheju, M. (2011). Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems Water. Air Soil Pollut., 222, 103-148. |
[70] | Noubactep, C. (2010a). The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA, 36, 663-670. |
[71] | Lamoureux, J-J. (2000). Précis de corrosion. Sciences des matériaux, p. 1-78, (2e Eds) Masson (In French). |
[72] | Noubactep, C. (2006). Contaminant reduction at the surface of elemental iron: The end of a myth. Wissenschaftliche Mitteilungen Freiberg, 31, 173-179. |
[73] | Noubactep, C. (2007). Processes of contaminant removal in “Fe°-H2O” systems revisited: The importance of co-precipitation. Open Environ. Sci., 1, 9-13. |
[74] | Noubactep, C. (2008). Processes of contaminant removal in “Fe°-H2O” systems revisited: The importance of co-precipitation. Open Environ. Sci., 1, 9-13. |
[75] | Odziemkowski, M. S., & Simpraga, R. P. (2004). Distribution of oxides on iron materials used for remediation of organic groundwater contaminants-Implications for hydrogen evolution reactions. Can. J. Chem., 82, 1495-1506. |
[76] | Baker, M. (1934). Sketch of the history of water treatment. Journal American Water Works Association, 26, 902-938. |
[77] | Noubactep, C. (2016b). Designing metallic iron packed-beds for water treatment: A critical review. Clean- Soil, Air, Water, 44, 411-421. |
[78] | Ghauch, A. (2015). Iron-based metallic systems: An excellent choice for sustainable water treatment. Freiberg Online Geosci., 38, p. 80. |
[79] | Keenan, C., & Salad, D. L. (2008). Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol., 42, 1262-1267. |
[80] | Ngai, T. K. K., Murcot, S., Shrestha, R. R., Dangol, B., & Maharjan, M. (2006). Development and dissemination of KanchanTM arsenic filter in rural Nepal. Water Sci. Technol. Water Supply, 6, 137-146. |
[81] | Hussam, A., & Munir, A. K. M. (2007). A simple and effective arsenic filter based on Composite iron matrix: Development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health, 42, 1869-1878. |
[82] | Hussam, A. (2009). contending with a development disaster: SONO filters remove arsenic from well water in Bangladesh. Innovations 4: 89-102. |
[83] | Makenzie PDI, Horney DP and Sivavec TM (1999). Mineral precipitation and porosity losses in granular in granular iron columns. J Hazard Mater. 68: 1-17. |
[84] | Li, L., & Benson, C. H. (2010). Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers. J. Hazard Mater. 181: 170180. https://doi.org/10.1016/j.jhdzmat.2010.04. 113 |
[85] | Ngai, T. K. K., Shrestha, R. R., Dangol, B., Maharjan, M., & Murcott, S. E. (2007). Design for sustainable development - Household drinking water filter for Arsenic and pathogen treatment in Nepal. J. Environ. Sci. Health, 42, 1879-1888. |
[86] | Btatkeu-K, B. D., Olvera-Vargas, H., Tchatchueng, J. B. Noubactep, C., & Caré, S. (2014). Determining the optimum Fe° ratio for sustainable granular Fe°/sand water filters. Chem. Eng. J. 247, 265–274. https://doi.org/10.1016/j.cej.2014.03.008 |
[87] | Suzanne Makota S. N., & Dipita Kolye, E. Y. H. (2021). Natural Coal Aggregates to the Rescue of Fe°-Bed Filters in Quaternary Reactive Zones Fe°/S/Pz/CX to Repel Clogging and Boost Reactivity. American Journal of Applied Chemistry. Vol. 9, No. 3, pp. 74-82. Doi: 10.11648/j.ajac.20210903.13 ISSN: 2330-8753 (Print); ISSN: 2330-8745 (Online). |
APA Style
Dipita Kolye Ernest Yves Herliche, Suzanne Makota S. N., Mbarga Landry Valère, Mintang Fongang Ulrich Armel, Dika Manga Joseph Marchand, et al. (2022). Natural Charcoal in Water Treatment Through Metal Bed Filters Fe°/S/Pz/C: The Concept of Wood-Energy-Sanitation. American Journal of Applied Chemistry, 10(1), 28-37. https://doi.org/10.11648/j.ajac.20221001.14
ACS Style
Dipita Kolye Ernest Yves Herliche; Suzanne Makota S. N.; Mbarga Landry Valère; Mintang Fongang Ulrich Armel; Dika Manga Joseph Marchand, et al. Natural Charcoal in Water Treatment Through Metal Bed Filters Fe°/S/Pz/C: The Concept of Wood-Energy-Sanitation. Am. J. Appl. Chem. 2022, 10(1), 28-37. doi: 10.11648/j.ajac.20221001.14
AMA Style
Dipita Kolye Ernest Yves Herliche, Suzanne Makota S. N., Mbarga Landry Valère, Mintang Fongang Ulrich Armel, Dika Manga Joseph Marchand, et al. Natural Charcoal in Water Treatment Through Metal Bed Filters Fe°/S/Pz/C: The Concept of Wood-Energy-Sanitation. Am J Appl Chem. 2022;10(1):28-37. doi: 10.11648/j.ajac.20221001.14
@article{10.11648/j.ajac.20221001.14, author = {Dipita Kolye Ernest Yves Herliche and Suzanne Makota S. N. and Mbarga Landry Valère and Mintang Fongang Ulrich Armel and Dika Manga Joseph Marchand and Nassi Achille}, title = {Natural Charcoal in Water Treatment Through Metal Bed Filters Fe°/S/Pz/C: The Concept of Wood-Energy-Sanitation}, journal = {American Journal of Applied Chemistry}, volume = {10}, number = {1}, pages = {28-37}, doi = {10.11648/j.ajac.20221001.14}, url = {https://doi.org/10.11648/j.ajac.20221001.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20221001.14}, abstract = {The concept of the W.E.S (Wood-Energy-Sanitation) for raising awareness among populations far from the distribution networks of drinking water is established. The process of decontaminating filter columns made up of natural charcoal (NC) as porous non-expansive absorbent/adsorbent materials such as pozzolan (Pz) is experienced. The contribution of the NC to the filtering power of the Fe°-based filters, whose decontamination involves the electrochemical oxidation processes of Fe°, and corrosion products (CPs) that can cause a blockage of the reactive surface is studied. To do this, seven systems were tested with reactive zones (RZ) respectively consisting of (1) C (pure NC), (2) Pz (pure Pozzolan), (3) Fe°/C (iron/NC), (4) Fe°/Pz (iron/Pozzolan), (5) Fe°/S/C (Iron/Sand/NC), (6) Fe°/S/Pz (Iron/Sand/Pozzolan), (7) Fe°/S/Pz/C (Iron/Sand/Pozzolan/NC). OM (orange methyl) of 2 mg/L concentration was used as operative indicator. The experiments lasted 40 days per device. Performance parameters such as pH, residual iron, OM discoloration and flow rate were measured. As a result, it appears that the NC alone or associated in the Fe°/C, Fe°/S/C devices has a better filtering power than the Pz. The combination of NC and Pz in the same Fe°/S/Pz/C device improves strikingly the results, such as Fe°/S/Pz/C > Fe°/S/C > Fe°/S/Pz > Fe°/C > Fe°/Pz > C > Pz. Combining two non-expansive porous materials in the RZ stabilizes the Fe°/S/Pz/C-filter and improves its lifespan.}, year = {2022} }
TY - JOUR T1 - Natural Charcoal in Water Treatment Through Metal Bed Filters Fe°/S/Pz/C: The Concept of Wood-Energy-Sanitation AU - Dipita Kolye Ernest Yves Herliche AU - Suzanne Makota S. N. AU - Mbarga Landry Valère AU - Mintang Fongang Ulrich Armel AU - Dika Manga Joseph Marchand AU - Nassi Achille Y1 - 2022/02/28 PY - 2022 N1 - https://doi.org/10.11648/j.ajac.20221001.14 DO - 10.11648/j.ajac.20221001.14 T2 - American Journal of Applied Chemistry JF - American Journal of Applied Chemistry JO - American Journal of Applied Chemistry SP - 28 EP - 37 PB - Science Publishing Group SN - 2330-8745 UR - https://doi.org/10.11648/j.ajac.20221001.14 AB - The concept of the W.E.S (Wood-Energy-Sanitation) for raising awareness among populations far from the distribution networks of drinking water is established. The process of decontaminating filter columns made up of natural charcoal (NC) as porous non-expansive absorbent/adsorbent materials such as pozzolan (Pz) is experienced. The contribution of the NC to the filtering power of the Fe°-based filters, whose decontamination involves the electrochemical oxidation processes of Fe°, and corrosion products (CPs) that can cause a blockage of the reactive surface is studied. To do this, seven systems were tested with reactive zones (RZ) respectively consisting of (1) C (pure NC), (2) Pz (pure Pozzolan), (3) Fe°/C (iron/NC), (4) Fe°/Pz (iron/Pozzolan), (5) Fe°/S/C (Iron/Sand/NC), (6) Fe°/S/Pz (Iron/Sand/Pozzolan), (7) Fe°/S/Pz/C (Iron/Sand/Pozzolan/NC). OM (orange methyl) of 2 mg/L concentration was used as operative indicator. The experiments lasted 40 days per device. Performance parameters such as pH, residual iron, OM discoloration and flow rate were measured. As a result, it appears that the NC alone or associated in the Fe°/C, Fe°/S/C devices has a better filtering power than the Pz. The combination of NC and Pz in the same Fe°/S/Pz/C device improves strikingly the results, such as Fe°/S/Pz/C > Fe°/S/C > Fe°/S/Pz > Fe°/C > Fe°/Pz > C > Pz. Combining two non-expansive porous materials in the RZ stabilizes the Fe°/S/Pz/C-filter and improves its lifespan. VL - 10 IS - 1 ER -