| Peer-Reviewed

A Review of Two-Dimensional Materials in Electrocatalysis and Their Potential Applications

Received: 30 May 2019     Accepted: 19 June 2019     Published: 29 June 2019
Views:       Downloads:
Abstract

Two-dimensional materials are crystalline materials consist of a single layer of atoms and sometimes referred to as single layer materials. Electrocatalytic energy conversion using renewable power sources is one of the most promising ways for energy storage and energy utilization in the new century. Over the past years, a great number of two-dimensional (2D) materials have been explored for various electrocatalytic reactions, such as the hydrogen evolution reaction, Carbon (IV) oxide (CO2) reduction reaction and Oxygen (O2) reduction reaction. This research provides an overview on the synthesis techniques of materials including bottom up approaches such as chemical vapor deposition (CVD) and physical vapor deposition (PVD) and top-down approaches like mechanical exfoliation, chemical exfoliation. Then, the characterization techniques of the two-dimensional (2D) materials such as Raman spectroscopy, X-ray diffraction, temperature-dependent resistivity and magnetic susceptibility and scanning tunneling microscopy (STM) are reviewed. Finally, potential applications of two-dimensional (2D) materials and conclusion, challenges and future work are discussed.

Published in American Journal of Materials Synthesis and Processing (Volume 4, Issue 1)
DOI 10.11648/j.ajmsp.20190401.12
Page(s) 9-22
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

Two-Dimensional Materials, Raman Spectroscopy, Chemical Vapor Deposition (CVD), Mechanical Exfoliation

References
[1] Fengwang Li and Mianqi Xue (2016). Two-Dimensional Transition Metal Dichalcogenides for Electrocatalytic Energy Conversion Applications, retrieved from http://dx.doi.org/10.5772/63947
[2] Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos Sa (2004). Electric field effect in atomically thin carbon films. Science; 306: 666–669.
[3] Mueller, T., Xia, F. & Avouris, P. (2010). Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301.
[4] Liu, Y. (2011). Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579.
[5] ‘Applied Graphene Materials plc: Graphene dispersions’ Retrieved from http://www.appliedgraphenematerials.com
[6] Hu Guohua, Kang Joohoon, Ng Leonard W. T, Zhu Xiaoxi, Howe Richard C. T., John Christopher G., Hersam Mark C., Hasan Tawfique (2018). Functional inks and printing of two-dimensional materials. Chemical Society Reviews. 47 (9), pp: 3265-3300.
[7] Kerativitayanan P., Carrow J. K., Gaharwar A. K., (2015). Nanomaterials for Engineering Stem Cell Responses. Advanced Healthcare Materials. 4 (11), pp: 1600-1627.
[8] Gaharwar A. K., Peppas N. A., Khademhosseini A., (2014). Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering. 111 (3), pp: 441-453.
[9] Chhowalla M., Shin H. S., Eda G., Li L. J., Loh K. P., Zhang H. (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry; 5: 263–275.
[10] Das S., Robinson J. A., Dubey M., Terrones H., Terrones M. (2015). Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annual Review of Materials Research; 45: 1–27.
[11] Sun Y, Gao S, Lei F, Xie Y. (2015). Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chemical Society Reviews; 44: 623–636.
[12] Wang Z, Zhu W, Qiu Y, Yi X, von dem Bussche A, Kane A, et al. (2016). Biological and environmental interactions of emerging two-dimensional nanomaterials. Chemical Society Reviews; 45: 1750–1780.
[13] Zhang X & Xie Y. (2013). Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chemical Society Reviews; 42: 8187–8199.
[14] Luo B, Liu G, Wang L. (2016). Recent advances in 2D materials for photocatalysis. Nanoscale; 8: 6904–6920. DOI: 10.1039/c6nr00546b.
[15] Garcia J. C., De Lima D. B., Assali L. V. C., Justo J. F., (1324). Group IV grapheme and graphene-like nanosheets. Journal of Physical Chemistry C. 115 (27), pp: 13242-13246.
[16] Lei Yang, Ping Liu, Jing Li and Bin Xiang (2017). Two-Dimensional Material Molybdenum Disulfides as Electrocatalysts for Hydrogen Evolution. Catalysts, 7, 285; pp 1-18, doi: 10.3390/catal7100285. Retrieved from www.mdpi.com/journal/catalysts
[17] Valenti G., Boni A., Melchionna M., Cargnello M., Nasi L., Bertoli G., Gorte R. J., Marcaccio M., Rapino S., Bonchio M., Fornasiero P., Prato M., Paolucci F. (2016). Co-axial Heterostructures Integrating Palladium/Titanium-dioxide with Carbon Nanotubes for Efficient Electrocatalytic Hydrogen Evolution. Nature Communications. 7: 13549.
[18] Wang Xin (2018). CNTs tuned to provide electrocatalyst support. Retrieved from http://www.nanotechweb.org
[19] Hong W. T., Risch M., Stoerzinger K. A., Grimaud A., Suntivich J., Shao-Horn Y. (2015). Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy and Environmental Science; 8, pp: 1404–1427.
[20] Bonaccorso F., Colombo L., Yu G., Stoller M., Tozzini V., Ferrari A. C., (2015). Two-dimensional (2D) materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science; 347: 1246501.
[21] Xie J., & Xie Y. (2015). Transition metal nitrides for electrocatalytic energy conversion: opportunities and challenges. Chemistry – A European Journal; 22, pp: 3588–3598.
[22] Zhang G., Liu H., Qu J., Li J. (2016). Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy and Environmental Science; 9, pp; 1190–1209. DOI: 10.1039/c5ee03761a.
[23] Mallouk T. E. (2013). Water electrolysis: divide and conquer. Nature Chemistry; 5, pp: 362–363.
[24] Turner J. A. (2004). Sustainable hydrogen production. Science; 305, pp: 972–974.
[25] Norskov J. K., & Christensen C. H. (2006). Toward efficient hydrogen production at surfaces. Science; 312, pp: 1322–1323.
[26] Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceeding National Acadamic Science. USA 102, pp: 10451–10453.
[27] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov (2004), Science, 306, 666.
[28] D. Pacilé, J. C. Meyer, Ç. Ö. Girit, A. Zettl, (2008). Applied Physics Letters, 92.
[29] H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, H. Zhang, (2013). Small, 9, 1974.
[30] K. Kalantar-zadeh, J. Tang, M. Wang, K. L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski, R. B. Kaner, (2010). Nanoscale, 2, 429.
[31] S. Balendhran, J. Deng, J. Z. Ou, S. Walia, J. Scott, J. Tang, K. L. Wang, M. R. Field, S. Russo, S. Zhuiykov, M. S. Strano, N. Medhekar, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, (2013). Advanced Materials, 25, 109.
[32] K. Kalantar-zadeh, A. Vijayaraghavan, M.-H. Ham, H. Zheng, M. Breedon, M. S. Strano, (2010). Chemistry of Materials, 22, 5660.
[33] Zhengfeng Yang (2017). Electronic Device Fabrication and Characterization Based on Two-Dimensional Materials, Master of Science Thesis at University of Illinois at Urbana-Champaign.
[34] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, (2013). Science, 340.
[35] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, (2008). Nature Nanotechnology, 3, 563.
[36] S. Park, R. S. Ruoff, (2009). Nature Nanotechnology, 4, 217.
[37] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, (2007). Carbon, 45, 1558.
[38] G. Eda, G. Fanchini, M. Chhowalla, (2008). Nature Nanotechnology, 3, 270.
[39] R. Ma, & T. Sasaki, (2010). Advanced Materials, 22, 5082.
[40] Y. Omomo, T. Sasaki, Wang, M. Watanabe, (2003). Journal of the American Chemical Society, 125, 3568.
[41] R. Ma, Z. Liu, L. Li, N. Iyi, T. Sasaki, (2006). Journal of Materials Chemistry, 16, 3809.
[42] L. Li, R. Ma, Y. Ebina, N. Iyi, T. Sasaki, (2005). Chemistry of Materials, 17, 4386.
[43] Q. Wang, & D. O’Hare, (2012). Chemical Reviews, 112, 4124.
[44] Y. Lin, T. V. Williams, J. W. Connell, (2009). Journal of Physical Chemistry Letters, 1, 277.
[45] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 42, 568–571.
[46] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, (2011). Angewandte Chemie International Edition, 50, 11093.
[47] J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. Xie, (2011). Journal of the American Chemical Society, 133, 17832.
[48] T. Lan, & T. J. Pinnavaia, (1994). Chemistry of Materials, 6, 2216.
[49] J. Ma, Z.-Z. Yu, Q.-X. Zhang, X.-L. Xie, Y.-W. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 42, 568–571. Mai, I. Luck, (2004). Chemistry of Materials, 16, 757.
[50] M. Valášková, M. Rieder, V. Matějka, P. Čapková, A. Slíva, (2007). Applied Clay Science, 35, 108.
[51] J. H. Park, S. C. Jana, (2003). Macromolecules, 36, 2758.
[52] Smith, R. J. et al. (2011). Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Advanced Materials, 23, 3944.
[53] R. E. Schaak, T. E. Mallouk, (2000). Chemistry of Materials, 12, 2513.
[54] Y.-S. Han, I. Park, J.-H. Choy (2001). Journal of Materials Chemistry, 11, 1277.
[55] M. M. J. Treacy, S. B. Rice, A. J. Jacobson, J. T. Lewandowski, (1990). Chemistry of Materials, 2, 279.
[56] A. J. Van Bommel, J. E. Crombeen, A. Van Tooren, (1975). Surface Science, 48, 463.
[57] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, (2009). Nature Materials, 8, 203.
[58] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, (2004). Journal of Physical Chemistry B, 108, 19912.
[59] L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, R. B. Kaner, (2005). Journal of Materials Chemistry, 15, 974.
[60] M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, I. A. Aksay, (2007). Chemistry of Materials, 19, 4396.
[61] G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, (2008). Journal of Physical Chemistry C, 112, 8192.
[62] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, J. N. Coleman, (2009). Journal of the American Chemical Society, 131, 3611.
[63] Choy, K. L. (2003). Chemical vapour deposition of coatings. Progressive Material Science. 48, pp: 57–170.
[64] Hou, X. & Choy, K. L. (2006). Processing and applications of aerosol-assisted chemical vapor deposition. Chemical Vapor Deposition, 12, pp: 583–596.
[65] Yuan, J.; Wu, J.; Hardy, W.J.; Loya, P.; Lou, M.; Yang, Y.; Najmaei, S.; Jiang, M.; Qin, F.; Keyshar, K. (2015). Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. Advanced Materials, 27, pp: 5605–5609.
[66] Ji, Q.; Li, C.; Wang, J.; Niu, J.; Gong, Y.; Zhang, Z.; Fang, Q.; Zhang, Y.; Shi, J.; Liao, L. (2017). Metallic vanadium disulfide nanosheets as a platform material for multi-functional electrode applications. Nano Letters, 17, pp: 4908–4916.
[67] Nicolas, D. B.; Christopher, S. B.; Claire, J. C.; Ivan, P. P.; Prieto, A. G. (2007). Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. App. Surf. Sci., 253, 6041–6046.
[68] Zhang, Z.; Niu, J.; Yang, P.; Gong, Y.; Ji, Q.; Shi, J.; Fang, Q.; Jiang, S.; Li, H.; Zhou, X. (2017). Van der waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Advanced Materials, 1702359.
[69] Wang, X.; Lin, J.; Zhu, Y.; Luo, C.; Suenaga, K.; Cai, C.; Xie, L. (2017). Chemical vapor deposition of trigonal prismatic NbS2 monolayer and 3R-polytype few-Layers. Nanoscale, in revision.
[70] Wang, H.; Huang, X.; Lin, J.; Cui, J.; Chen, Y.; Zhu, C.; Liu, F.; Zeng, Q.; Zhou, J.; Yu, P. (2017). High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nature. Communications, 8, 394.
[71] Fu, W.; Chen, Y.; Lin, J.; Wang, X.; Zheng, Q.; Zhou, J.; Zheng, L.; Wang, H.; He, Y.; Fu, Q. (2016). Controlled synthesis of atomically thin 1T-TaS2 for tunable charge density wave phase transitions. Chem. Mater., 28, pp: 7613–7618.
[72] Jin, G.; Kim, C.; Jo, H.; Kwon, S. H.; Jeong, S. J.; Lee, H. B. R.; Ahn, J. H. (2017). Vapor phase synthesis of TaS2 nanocrystals with iodine as transport agent. Japan Journal of Applied Physics, 56, 045501.
[73] Boscher, N. D.; Carmalt, C. J.; Parkin, I. P. (2006). Atmospheric pressure CVD of TiSe2 thin films on glass. Chem. Vap. Deposition, 12, 54–58.
[74] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, pp: 574–578.
[75] A. N. Obraztsov, (2009). Nature Nanotechnology, 4, 212.
[76] M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, J. Park, (2009). Nano Letters, 9, 4479.
[77] Lin, M. et al. (2013). Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. Journal of American Chemical Society. 135, 13274.
[78] Zhou, J. et al. (2015). Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Letters. 15, 6400.
[79] Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. (2012). Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small. 8, pp: 966–971.
[80] Liu, K. K. et al. (2012). Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Letters. 12, pp: 1538–1544.
[81] Feng, W. et al. (2016). Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chem. Mater. 28.
[82] F. Wang, & X. Wang, (2014). Nanoscale, DOI: 10.1039/C4NR00973H.
[83] Michael Naguib Abdelmalak (2014). MXenes: A New Family of Two-Dimensional Materials and its Application as Electrodes for Li-ion Batteries. Ph. D Thesis at Drexel University.
[84] Sugai, S.; Murase, K.; Uchida, S.; Tanaka, S. (1981). Investigation of the charge density waves in 1T-VSe2 by Raman scattering. J. Phy. Colloques, 42, pp: 740–742.
[85] Hirata, T.; Ohuchi, F. S. (2001). Temperature dependence of the Raman spectra of 1T-TaS2. Solid State. Communications, 117, pp: 361–364.
[86] Samnakay, R.; Wickramaratne, D.; Pope, R.; Lake, R. K.; Salguero, T. T.; Balandin, A. A. (2015). Zone-folded phonons and the commensurate incommensurate charge-density-wave transition in 1T-TaSe2 thin films. Nano Letters, 15, pp: 2965–2973.
[87] Hajiyev, P.; Cong, C.; Qiu, C.; Yu, T. (2013). Contrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe2. Sci. Rep., 3, 2593.
[88] Sugai, S.; Murase, K. (1982). Generalized electronic susceptibility and charge density waves in 2H-TaSe2 by Raman scattering. Phys. Rev. B., 25, pp: 2418–2427.
[89] Goli, P.; Khan, J.; Wickramaratne, D.; Lake, R. K.; Balandin, A. A. (2012). Charge density waves in exfoliated films of Van der waals materials: Evolution of Raman spectrum in TiSe2. Nano Letters, 12, pp: 5941–5945.
[90] Xi, X.; Zhao, L.; Wang, Z.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. (2015). Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotechnology, 10, pp: 765–769.
[91] Cong, C.; Yu, T.; Sato, K.; Shang, J.; Saito, R.; Dresselhaus, G. F.; Dresselhaus, M. S. (2011). Raman characterization of ABA-and-ABC-Stacked trilayer graphene. ACS Nano., 5, pp: 8760–8768.
[92] Lui, C. H.; Li, Z.; Chen, Z.; Klimov, P. V.; Brus, L. E.; Heinz, T. F. (2011). Imaging stacking order in few-layer graphene. Nano letters, 11, pp: 164–169.
[93] Li, S. L.; Miyazaki, H.; Song, H.; Kuramochi, H.; Nakaharai, S.; Tsukagoshi, K. (2012). Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano., 6, pp: 7381–7388.
[94] Lv, R.; Li, Q.; Méndez, A. R. B.; Hayashi, T.; Wang, B.; Berkdemir, A.; Hao, Q.; Elías, A. L.; Silva, R. S.; Gutiérrez, H. R. (2012). Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep., 2, 586.
[95] Cong, C.; Li, K.; Zhang, X. X.; Yu, T. (2013). Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM. Sci. Rep., 3, 1195.
[96] Cong, C.; Yu, T.; Wang, H. M. (2010). Raman study on the G-mode of graphene for determination of edge orientation. ACS Nano., 4, pp: 3175–3180.
[97] Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. (2012). Optical separation of mechanical strain from charge doping in graphene. Nature Communications, 3, 1024.
[98] Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. (2008). Uniaxial strain on graphene: Raman spectroscopy study and bandgap opening. ACS Nano., 2, pp: 2301–2305.
[99] R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M. S. Dresselhaus, (2011). Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, pp: 413–550.
[100] A. Jorio, R. Saito, G. Dresselhaus, M. S. Dresselhaus, (2011). Raman Spectroscopy in Graphene Related Systems (Wiley-VCH, 2011).
[101] M. S. Dresselhaus, A. Jorio, R. Saito, (2010). Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annu. Rev. Condens. Matter Phys. 1, pp: 89–108.
[102] A. Molina-Sanchez and L. Wirtz, (2011). Phonons in single-layer and few-layer MoS2 and WS2, Physical Review B, vol. 84, pp: 155413.
[103] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, (2010). Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Letter. 10, pp: 751–758.
[104] X. Zhang, (2015). Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, pp: 2757–2785.
[105] S. Huang, (2016). In-Plane Optical Anisotropy of Layered Gallium Telluride. ACS Nano. 10, pp: 8964–8972.
[106] X. Ling, (2016). Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. Nano Letter. 16, pp: 2260–2267.
[107] Mulazzi, M.; Chainani, A.; Katayama, N.; Eguchi, R.; Matsunami, M.; Ohashi, H.; Senba, Y.; Nohara, M.; Uchida, M.; Takagi, H. (2010). Absence of nesting in the charge-density-wave system 1T-VS2 as seen by photoelectron spectroscopy. Phys. Rev. 82, 075130.
[108] Xu, K.; Chen, P.; Li, X.; Wu, C.; Guo, Y.; Zhao, J.; Wu, X.; Xie, Y. (2013). Ultrathin nanosheets of vanadium diselenide: A metallic two-dimensional material with ferromagnetic charge-density-wave behavior. Angew. Chem. Int. Ed., 52, pp: 10477–10481.
[109] Yang, J.; Wang, W.; Liu, Y.; Du, H.; Ning, W.; Zheng, G.; Jin, C.; Han, Y.; Wang, N.; Yang, Z. (2014). Thickness dependence of the charge-density-wave transition temperature in VSe2. Appl. Phys. Lett., 105, 063109.
[110] Yu, Y.; Yang, F.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L.; Niu, X.; Kim, S.; Son, Y. W.; Feng, D. (2015). Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology, 10, pp: 270–276.
[111] Liu, G.; Debnath, B.; Pope, T. R.; Salguero, T. T.; Lake, R. K.; Balandin, A. A. (2016). A charge-density-wave oscillator based on an integrated tantalum disulfide–boron nitride–graphene device operating at room temperature. Nature Nanotechnology, 11, pp: 845–850.
[112] Mutka, H.; Zuppiroli, L.; Molinie, P.; Bourgoin, J. C. (1981). Charge-density waves and localization in electron-irradiated 1T-TaS2. Phys. Rev. B, 23, pp: 5030–5037.
[113] Wilson, J. A.; Di Salvo, F. J.; Mahajan, S. (1974). Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett., 32, pp: 882–884.
[114] Yoshida, M.; Yijin, Z.; Jianting, Y.; Ryuji, S.; Yasuhiko, I.; Shigeru, K.; Akihiko, F.; Yoshihiro, I. (2014). Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep., 4, 7302.
[115] Tsen, A. W.; Hovden, R.; Wang, D.; Kim, Y. D.; Okamoto, J.; Spoth, K. A.; Liu, Y.; Lu, W.; Sunf, Y.; James, C. (2015). Structure and control of charge density waves in two-dimensional 1T-TaS2. Proceeding National Academic Science, USA, 112, pp: 15054–15059.
[116] Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; et al. (2010). Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Letter, 10, pp: 3209–3215.
[117] Xi, X.; Zhao, L.; Wang, Z.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. (2015). Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotechnology, 10, pp: 765–769.
[118] Ugeda, M. M.; Bradley, A. J.; Zhang, Y.; Onishi1, S.; Chen, Y.; Ruan, W.; Aristizaba, C. O.; Ryu, H.; Mark, T.; Edmonds, M. T. (2016). Characterization of collective ground states in single-layer NbSe2. Nat. Phys., 12, pp: 92–97.
[119] Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C. (2010). Ultra-thin PbS Sheets by Two-Dimensional Oriented Attachment. Science, 329, pp: 550–553.
[120] Bizeto, M. A.; Shiguihara, A. L.; Constantino, V. R. L. (2009). Layered Niobate Nanosheets: Building Blocks for Advanced Materials Assembly. Journal of Material Chemistry, 19, pp: 2512–2525.
[121] Ebina, Y.; Sasaki, T.; Watanabe, M. (2002). Study on Exfoliation of Layered Perovskite-Type Niobates. Solid State Ionics, 151, pp: 177–182.
[122] Ding, Z.; Bux, S. K.; King, D. J.; Chang, F. L.; Chen, T.-H.; Huang, S.-C.; Kaner, R. B. (2009). Lithium Intercalation and Exfoliation of Layered Bismuth Selenide and Bismut Telluride. Journal of Material Chemistry, 19, pp: 2588–2592.
[123] Fukuda, K.; Akatsuka, K.; Ebina, Y.; Ma, R.; Takada, K.; Nakai, I.; Sasaki, T. (2008). Exfoliated Nano-sheet Crystallite of Cesium Tungstate with 2D Pyrochlore Structure: Synthesis, Characterization, and Photochromic Properties. ACS Nano, 2, pp: 1689–1695.
[124] Aksit, M.; Toledo, D. P.; Robinson, R. D. (2012). Scalable Nano-manufacturing of Millimetre-Length 2D NaxCoO2 Nanosheets. Journal of Material Chemistry, 22, pp: 5936–5944.
[125] Sheneve Z. Butler, Shawna M. Hollen, Linyou Cao, Yi Cui, Jay A. Gupta, Humberto R. Gutie´ rrez, Tony F. Heinz, Seung Sae Hong, Jiaxing Huang, Ariel F. Ismach, Ezekiel Johnston-Halperin, Masaru Kuno, Vladimir V. Plashnitsa, Richard D. Robinson, Rodney S. Ruoff, Sayeef Salahuddin, Jie Shan, Li Shi, O Michael G. Spencer, Mauricio Terrones, Wolfgang Windl, and Joshua E. Goldberger (2013). Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene, ACS Nano, 7 (4), pp: 2898–2926.
[126] Li, G. & Andrei, E. Y. (2007). Observation of Landau Levels of Dirac Fermions in Graphite. Nat. Phys., 3, 623–627.
[127] Miller, D. L.; Kubista, K. D.; Rutter, G. M.; Ruan, M.; de Heer, W. A.; First, P. N.; Stroscio, J. A. (2009). Observing the Quantization of Zero Mass Carriers in Graphene. Science, 324, pp: 924–927.
[128] Helveg, S.; Lauritsen, J. V.; Laegsgaard, E.; Stensgaard, I.; Norskov, J. K.; Clausen, B. S.; Topsoe, H.; Besenbacher, F. (2000). Atomic-Scale Structure of Single-Layer MoS2 Nanoclusters. Phys. Rev. Lett., 84, pp: 951–954.
[129] Auwarter, W.; Kreutz, T. J.; Greber, T.; Osterwalder, J. (1999). XPD and STM Investigation of Hexagonal Boron Nitride on Ni (111). Surface Science, 429, pp: 229–236.
[130] Brar, V. W.; Decker, R.; Solowan, H. M.; Wang, Y.; Maserati, L.; Chan, K. T.; Lee, H.; Girit, C. O.; Zettl, A.; Louie, S. G. (2011). Gate-Controlled Ionization and Screening of Cobalt Adatoms on a Graphene Surface. Nat. Phys., 7, pp: 43–47.
[131] Gyamfi, M.; Eelbo, T.; Wasniowska, M.; Wiesendanger, R. Fe (2011) Adatoms on Graphene/Ru (0001): Adsorption Site and Local Electronic Properties. Phys. Rev., 84, 4.
[132] Brihuega, I.; Michaelis, C. H.; Zhang, J.; Bose, S.; Sessi, V.; Honolka, J.; Schneider, M. A.; Enders, A.; Kern, K. (2008). Electronic Decoupling and Templating of CO Nanocluster Arrays on the Boron Nitride Nanomesh. Surface Science, 602, pp: L95–L99.
[133] Natterer, F. D.; Patthey, F.; Brune, H. (2012). Ring State for Single Transition Metal Atoms on Boron Nitride on Rh (111). Phys. Rev. Lett., 109, 066101.
[134] Besenbacher, F.; Lauritsen, J. V.; Linderoth, T. R.; Laegsgaard, E.; Vang, R. T.; Wendt, S. (2009). Atomic-Scale Surface Science Phenomena Studied by Scanning Tunneling Microscopy. Surface Science, 603, pp: 1315–1327.
[135] Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P. (2010). Atom-by-Atom Structural and Chemical Analysis by Annular Dark-Field Electron Microscopy. Nature, 464, pp: 571–574.
[136] Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urías, F.; Crespi, V. H.; Terrones, M. (2012). Extra-ordinary Room-Temperature Photoluminescence in WS2 Monolayers. Nano Letter, DOI: 10.1021/nl3026357.
[137] Ma, D.; Wang, Q.; Li, T.; Tang, Z.; Yang, G.; He, C.; Lu, Z. (2015). CO catalytic oxidation on Al-doped graphene-like ZnO mono-layer sheets: A first-principles study. Journal of Material Chemistry, 3, pp: 9964–9972.
[138] Rao, G. S.; Hussain, T.; Islam, M. S.; Sagynbaeva, M.; Gupta, D.; Panigrahi, P.; Ahuja, R. (2016). Adsorption mechanism of graphene-like ZnO mono-layer towards CO2 molecules: enhanced CO2 capture. Nanotechnology, 27, 015502.
[139] Zhang, Y. H.; Zhang, M. L.; Zhou, Y. C.; Zhao, J. H.; Fanga, S. M.; Li, F. (2014). Tunable electronic and magnetic properties of graphene-like ZnO mono-layer upon doping and CO adsorption: A first-principles study. Journal of Material Chemistry, 2, 13129.
[140] Chaojie Cui, Fei Xue, Wei-Jin Hu, Lain-Jong Li (2008). Two-dimensional materials with piezoelectric and ferroelectric Functionalities. Nature Partner Journals, 2D materials and applications. Retrieved from www.nature.com/npj2dmaterials
[141] Wu, W. (2014). Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 514, 470.
[142] Lee, J. H. (2017). Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Advanced Materials 29, 1606667.
[143] Hao, C. (2016). Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Advanced Materials, 28, pp: 3194–3201.
[144] Kulish, V. V., Malyi, O. I., Persson, C. & Wu, P. (2015). Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, pp: 13921–13928.
[145] A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. Van Der Zant, N. Agraït, G. Rubio-Bollinger, (2012). Elastic properties of freely suspended MoS2 nanosheets, Advanced Materials, 24, pp: 772–775.
[146] J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, T. Takenobu (2012). Highly flexible MoS2 thin-film transistors with ion gel dielectrics, Nano Letters 12, pp: 4013–4017.
[147] M. Y. Zavodchikova, T. Kulmala, A. G. Nasibulin, V. Ermolov, S. Franssila, K. Grigoras, E. I. Kauppinen (2009). Carbon nanotube thin film transistors based on aerosol methods, Nanotechnology, 20, 085201.
[148] D.-M. Sun, M. Y. Timmermans, Y. Tian, A. G. Nasibulin, E. I. Kauppinen, S. Kishimoto, T. Mizutani, Y. Ohno, (2011). Flexible high-performance carbon nanotube integrated circuits, Nature Nanotechnology 6, pp: 156–161.
[149] M. S. Arnold, A. S. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam (2006). Sorting carbon nanotubes by electronic structure using density differentiation, Nature nanotechnology, 1, pp: 60-65.
[150] M. Singh, H. M. Haverinen, P. Dhagat, G. E. Jabbour (2010). Inkjet printing-process and its applications, Advanced Materials, 22, pp: 673–685.
[151] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang (2012). Single-layer MoS2 phototransistors, ACS Nano, 6, pp: 74–80.
[152] O. Lopez-Sanchez, D. Lembke, M. Kayi, A. Radenovic, A. Kis, (2013). Ultrasensitive photodetectors based on monolayer MoS2, Nature Nanotechnology, 8, pp: 497–501.
[153] A. Abderrahmane, P. J. Ko, T. V. Thu, S. Ishizawa, T. Takamura, A. Sandhu (2014). High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors, Nanotechnology, 25, 365202.
[154] N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia, J. Li (2014). Photo-responsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes., Scientific reports, 4, 5209.
[155] W. Zhang, M. H. Chiu, C. H. Chen, W. Chen, L. J. Li, A. T. S. Wee (2014). Role of metal contacts in high-performance phototransistors based on WSe2 monolayers, ACS Nano, 8, pp: 8653–8661.
[156] X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang (2014). Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nature Nanotechnology, 9, pp: 1–5.
[157] F. H. Koppens, T Mueller, P Avouris, A. C. Ferrari, M. S. Vitiello, M Polini (2014). Photodetectors based on graphene, other two-dimensional materials and hybrid systems”, Nature Nanotechnology, 9, pp: 780–793.
[158] Li F, Zhao S-F, Chen L, Khan A, MacFarlane D. R., Zhang J. (2016). Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. Energy and Environmental Science; 9, pp: 216–223.
[159] Chan K., Tsai C., Hansen H. A., Nørskov J. K. (2014). Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. Chemical Catalyst Chemistry; 6, pp: 1899–1905.
[160] Shi C., Hansen H. A., Lausche A. C., Nørskov J. K. (2014). Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Physical Chemistry Chemical Physics; 16, pp: 4720–4727.
[161] Asadi M., Kumar B., Behranginia A., Rosen B. A., Baskin A., Repnin N. (2014). Robust carbon dioxide reduction on molybdenum disulphide edges. Nature Communications; 5: 4470.
Cite This Article
  • APA Style

    Yau Jamilu Muhammad, Mikail Abdulkarim Alhaji, Mohammed Abdullahi Gele, Badamasi Haruna, Sirajo Alhassan, et al. (2019). A Review of Two-Dimensional Materials in Electrocatalysis and Their Potential Applications. American Journal of Materials Synthesis and Processing, 4(1), 9-22. https://doi.org/10.11648/j.ajmsp.20190401.12

    Copy | Download

    ACS Style

    Yau Jamilu Muhammad; Mikail Abdulkarim Alhaji; Mohammed Abdullahi Gele; Badamasi Haruna; Sirajo Alhassan, et al. A Review of Two-Dimensional Materials in Electrocatalysis and Their Potential Applications. Am. J. Mater. Synth. Process. 2019, 4(1), 9-22. doi: 10.11648/j.ajmsp.20190401.12

    Copy | Download

    AMA Style

    Yau Jamilu Muhammad, Mikail Abdulkarim Alhaji, Mohammed Abdullahi Gele, Badamasi Haruna, Sirajo Alhassan, et al. A Review of Two-Dimensional Materials in Electrocatalysis and Their Potential Applications. Am J Mater Synth Process. 2019;4(1):9-22. doi: 10.11648/j.ajmsp.20190401.12

    Copy | Download

  • @article{10.11648/j.ajmsp.20190401.12,
      author = {Yau Jamilu Muhammad and Mikail Abdulkarim Alhaji and Mohammed Abdullahi Gele and Badamasi Haruna and Sirajo Alhassan and Dauda Garba and Ahmed Misbahu},
      title = {A Review of Two-Dimensional Materials in Electrocatalysis and Their Potential Applications},
      journal = {American Journal of Materials Synthesis and Processing},
      volume = {4},
      number = {1},
      pages = {9-22},
      doi = {10.11648/j.ajmsp.20190401.12},
      url = {https://doi.org/10.11648/j.ajmsp.20190401.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmsp.20190401.12},
      abstract = {Two-dimensional materials are crystalline materials consist of a single layer of atoms and sometimes referred to as single layer materials. Electrocatalytic energy conversion using renewable power sources is one of the most promising ways for energy storage and energy utilization in the new century. Over the past years, a great number of two-dimensional (2D) materials have been explored for various electrocatalytic reactions, such as the hydrogen evolution reaction, Carbon (IV) oxide (CO2) reduction reaction and Oxygen (O2) reduction reaction. This research provides an overview on the synthesis techniques of materials including bottom up approaches such as chemical vapor deposition (CVD) and physical vapor deposition (PVD) and top-down approaches like mechanical exfoliation, chemical exfoliation. Then, the characterization techniques of the two-dimensional (2D) materials such as Raman spectroscopy, X-ray diffraction, temperature-dependent resistivity and magnetic susceptibility and scanning tunneling microscopy (STM) are reviewed. Finally, potential applications of two-dimensional (2D) materials and conclusion, challenges and future work are discussed.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A Review of Two-Dimensional Materials in Electrocatalysis and Their Potential Applications
    AU  - Yau Jamilu Muhammad
    AU  - Mikail Abdulkarim Alhaji
    AU  - Mohammed Abdullahi Gele
    AU  - Badamasi Haruna
    AU  - Sirajo Alhassan
    AU  - Dauda Garba
    AU  - Ahmed Misbahu
    Y1  - 2019/06/29
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ajmsp.20190401.12
    DO  - 10.11648/j.ajmsp.20190401.12
    T2  - American Journal of Materials Synthesis and Processing
    JF  - American Journal of Materials Synthesis and Processing
    JO  - American Journal of Materials Synthesis and Processing
    SP  - 9
    EP  - 22
    PB  - Science Publishing Group
    SN  - 2575-1530
    UR  - https://doi.org/10.11648/j.ajmsp.20190401.12
    AB  - Two-dimensional materials are crystalline materials consist of a single layer of atoms and sometimes referred to as single layer materials. Electrocatalytic energy conversion using renewable power sources is one of the most promising ways for energy storage and energy utilization in the new century. Over the past years, a great number of two-dimensional (2D) materials have been explored for various electrocatalytic reactions, such as the hydrogen evolution reaction, Carbon (IV) oxide (CO2) reduction reaction and Oxygen (O2) reduction reaction. This research provides an overview on the synthesis techniques of materials including bottom up approaches such as chemical vapor deposition (CVD) and physical vapor deposition (PVD) and top-down approaches like mechanical exfoliation, chemical exfoliation. Then, the characterization techniques of the two-dimensional (2D) materials such as Raman spectroscopy, X-ray diffraction, temperature-dependent resistivity and magnetic susceptibility and scanning tunneling microscopy (STM) are reviewed. Finally, potential applications of two-dimensional (2D) materials and conclusion, challenges and future work are discussed.
    VL  - 4
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Mechanical Engineering, Bayero University, Kano, Nigeria

  • Department of Physics, Federal University, Wukari, Nigeria

  • Sokoto Energy Research Centre, Services Unit, Sokoto, Nigeria

  • Department of Mechanical Engineering, Bayero University, Kano, Nigeria

  • Department of Mechanical Engineering, Bayero University, Kano, Nigeria

  • Department of Mechanical Engineering, Bayero University, Kano, Nigeria

  • National Centre for Petroleum Research and Development, Energy Commission of Nigeria, Bauchi, Nigeria

  • Sections