| Peer-Reviewed

Synthesis and Antibacterial Activity of 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo Quinazolin-4(3H)-one from 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one

Received: 4 April 2023     Accepted: 24 April 2023     Published: 10 May 2023
Views:       Downloads:
Abstract

Introduction: Broad range of quinazolinone biological properties including: antibacterial, anticancer, and anti-inflammatory activities motivate us to synthesis some quinazolinone derivatives. These heterocycles are profitable intermediates in organic synthesis. Methods/Experimental: The compound 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one (1), was produce when 2-(o-aminophenyl)-3-amino-6-bromo–Quinazolin-4(3H)-one (0.055M) was dissolved in minimum amount of dil. HCl in a round bottom flask. Ammonium thiocyanate (0.11M, 9.68gm) was then added and the mixture refluxed for 7 hrs. A mixture of 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–Quinazolin-4(3H)-one (0.037M, 16.095gm) and fused sodium acetate (0.074M, 6.068gm) was taken in absolute alcohol (300ml) and refluxed for 10 hours to give 6-bromo-2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)-Quinazolin-4(3H)-one(2). These Compounds were evaluated for their antibacterial activity (against some gram positive and gram negative microorganism) and antifungal activity (against Candida albicans). Study Design: This study was experimentally design and the antibacterial activity was evaluated against some microorganism, Staphylococcus aureus, Bacillus species, Aspergillus Species, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and candida albicans Result: The compounds exhibited significant antibacterial activity with a zone of inhibition in the range of 10 – 20mm in comparison to control. Conclusions: From our findings, the compounds synthesized have higher antibacterial activities against Staphylococcus aureus, Aspergillus Species, as compared to Ciprofloxicin (CPX) and Ketonaxol (PEF) standard antibacterial drugs.

Published in American Journal of Materials Synthesis and Processing (Volume 8, Issue 1)
DOI 10.11648/j.ajmsp.20230801.11
Page(s) 1-5
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2023. Published by Science Publishing Group

Keywords

Antibacterial Activity, Quinazolinone Derivatives, 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo–Quinazolin-4(3H)-one, 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one

References
[1] Chandregowda V, Kush AK, Chandrasekara Reddy G: Synthesis and in vitro antitumor activities of novel 4-anilinoquinazoline derivatives. Eur J Med Chem. 2009, 44: 3046-3055. 10.1016/j.ejmech.2008.07.023.
[2] Al-Rashood ST, Aboldahab IA, Nagi MN, Abouzeid LA, Abdel-Aziz AA, Abdel-Hamide SG, Youssef KM, Al-Obaid AM, El-Subbagh HI: Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs. Bioorg Med Chem. 2006, 14: 8608-8621. 10.1016/j.bmc.2006.08.030.
[3] Vasdev N, Dorff PN, Gibbs AR, Nandanan E, Reid LM, Neil JPO’, VanBrocklin HF: Synthesis of 6-acrylamido-4-(2-[18F] fluoroanilino) quinazoline: A prospective irreversible EGFR binding probe. J Lablelled Compd Rad. 2005, 48: 109-115. 10.1002/jlcr.903.
[4] Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, Gibson KH: ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002, 62: 5749-5754.
[5] Alagarsamy V, Solomon VR, Dhanabal K: Synthesis and pharmacological evaluation of some 3-phenyl-2-substituted-3H-quinazolin-4-one as analgesic, anti-inflammatory agents. Bioorg Med Chem. 2007, 15: 235-241. 10.1016/j.bmc.2006.09.065.
[6] Baba A, Kawamura N, Makino H, Ohta Y, Taketomi S, Sohda T: Studies on disease-modifying antirheumatic drugs: synthesis of novel quinoline and quinazoline derivatives and their anti-inflammatory effect 1. J Med Chem. 1996, 39: 5176-5182. 10.1021/jm9509408.
[7] Rohini R, Muralidhar Reddy P, Shanker K, Hu A, Ravinder V: Antimicrobial study of newly synthesized 6-substituted indolo[1,2-c]quinazolines. Eur J Med Chem. 2010, 45: 1200-1205. 10.1016/j.ejmech.2009.11.038.
[8] Antipenko L, Karpenko A, Kovalenko S, Katsev A, Komarovska-Porokhnyavets E, Novikov V, Chekotilo A: Synthesis of new 2-thio-[1,2,4]triazolo[1,5-c]quinazoline derivatives and its antimicrobial activity. Chem Pharm Bull. 2009, 57: 580-585. 10.1248/cpb.57.580.
[9] Jatav V, Kashaw S, Mishra P: Synthesis and antimicrobial activity of some new 3–[5-(4-substituted)phenyl-1,3,4-oxadiazole-2yl]-2-styrylquinazoline-4(3H)-ones. Med Chem Res. 2008, 17: 205-211. 10.1007/s00044-007-9054-3.
[10] Aly AA: Synthesis of novel quinazoline derivatives as antimicrobial agents. Chin J Chem. 2003, 21: 339-346.
[11] Li H, Huang R, Qiu D, Yang Z, Liu X, Ma J, Ma Z: Synthesis and bioactivity of 4-quinazoline oxime ethers. Prog Nat Sci. 1998, 8: 359-365.
[12] Chandrika PM, Yakaiah T, Narsaiah B, Sridhar V, Venugopal G, Rao JV, Kumar KP, Murthy USN, Rao ARR: Synthesis leading to novel 2,4,6-trisubstituted quinazoline derivatives, their antibacterial and cytotoxic activity against THP-1, HL-60 and A375 cell lines. Indian J Chem. 2009, 48B: 840-847.
[13] Paneersalvam P, Raj T, Ishar PS M, Singh B, Sharma V, Rather BA: Anticonvulsant activity of Schiff bases of 3-amino-6,8-dibromo-2-phenyl-quinazolin-4(3H)-ones. Indian J Pharm Sci. 2010, 72: 375-378. 10.4103/0250-474X.70488.
[14] Nandy P, Vishalakshi MT, Bhat AR: Synthesis and antitubercular activity of Mannich bases of 2-methyl-3H-quinazolin-4-ones. Indian J Heterocycl Chem. 2006, 15: 293-294.
[15] Saravanan G, Alagarsamy V, Prakash CR: Synthesis and evaluation of antioxidant activities of novel quinazoline derivatives. Int J Pharm Pharm Sci. 2010, 2: 83-86.
[16] Lakhan R, Singh OP, Singh-J RL: Studies on 4 (3H)-quinazolinone derivatives as anti-malarials. J Indian Chem Soc. 1987, 64: 316-318.
[17] Hess HJ, Cronin TH, Scriabine A: Antihypertensive 2-amino-4(3H)-quinazolinones. J Med Chem. 1968, 11: 130-136. 10.1021/jm00307a028.
[18] Sasmal S, Balaji G, Kanna Reddy HR, Balasubrahmanyam D, Srinivas G, Kyasa S, Sasmal PK, Khanna I, Talwar R, Suresh J, Jadhav VP, Muzeeb S, Shashikumar D, Harinder Reddy K, Sebastian VJ, Frimurer TM, Rist Ø, Elster L, Högberg T: Design and optimization of quinazoline derivatives as melanin concentrating hormone receptor 1 (MCHR1) antagonists. Bioorg Med Chem Lett. 2012, 22: 3157-3162. 10.1016/j.bmcl.2012.03.050.
[19] Alvarado M, Barceló M, Carro L, Masaguer CF, Raviña E: Synthesis and biological evaluation of new quinazoline and cinnoline derivatives as potential atypical antipsychotics. Chem Biodivers. 2006, 3: 106-117. 10.1002/cbdv.200690001.
[20] Malamas MS, Millen J: Quinazolineacetic acids and related analogs as aldose reductase inhibitors. J Med Chem. 1991, 34: 1492-1503. 10.1021/jm00108a038.
[21] Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem. 2015, 90, 124–169, DOI: 10.1016/j.ejmech.2014.10.084.
[22] Gupta, T.; Rohilla, A.; Pathak, A.; Akhtar, M. J.; Haider, M. R.; Yar, M. S. Current perspectives on quinazolines with potent biological activities: A review. Synth. Commun. 2018, 48, 1099– 1127, DOI: 10.1080/00397911.2018.1431282.
[23] Akduman, B.; Crawford, E. D. Terazosin, doxazosin, and prazosin: current clinical experience. Urology 2001, 58, 49– 54, DOI: 10.1016/S0090-4295(01)01302-4.
[24] McConnell, J. D. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N. Engl. J. Med. 2003, 349, 2387– 2398, DOI: 10.1056/NEJMoa030656..
[25] Pao, W.; Miller, V. A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol. 2005, 23, 2556–2568, DOI: 10.1200/JCO.2005.07.799.
[26] Miller, V. A. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J. Clin. Oncol. 2004, 22, 1103– 1109, DOI: 10.1200/JCO.2004.08.158.
[27] Mackie, R,: Cartney, M. C. Practical Medicinal Microbiology 3rd edition, Vol.2 Churchill Livingstone (Publishers), London and New York. 1984; 121, 141: Pp. 100-106.
Cite This Article
  • APA Style

    Osarumwense Peter Osarodion. (2023). Synthesis and Antibacterial Activity of 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo Quinazolin-4(3H)-one from 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one. American Journal of Materials Synthesis and Processing, 8(1), 1-5. https://doi.org/10.11648/j.ajmsp.20230801.11

    Copy | Download

    ACS Style

    Osarumwense Peter Osarodion. Synthesis and Antibacterial Activity of 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo Quinazolin-4(3H)-one from 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one. Am. J. Mater. Synth. Process. 2023, 8(1), 1-5. doi: 10.11648/j.ajmsp.20230801.11

    Copy | Download

    AMA Style

    Osarumwense Peter Osarodion. Synthesis and Antibacterial Activity of 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo Quinazolin-4(3H)-one from 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one. Am J Mater Synth Process. 2023;8(1):1-5. doi: 10.11648/j.ajmsp.20230801.11

    Copy | Download

  • @article{10.11648/j.ajmsp.20230801.11,
      author = {Osarumwense Peter Osarodion},
      title = {Synthesis and Antibacterial Activity of 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo Quinazolin-4(3H)-one from 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one},
      journal = {American Journal of Materials Synthesis and Processing},
      volume = {8},
      number = {1},
      pages = {1-5},
      doi = {10.11648/j.ajmsp.20230801.11},
      url = {https://doi.org/10.11648/j.ajmsp.20230801.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmsp.20230801.11},
      abstract = {Introduction: Broad range of quinazolinone biological properties including: antibacterial, anticancer, and anti-inflammatory activities motivate us to synthesis some quinazolinone derivatives. These heterocycles are profitable intermediates in organic synthesis. Methods/Experimental: The compound 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one (1), was produce when 2-(o-aminophenyl)-3-amino-6-bromo–Quinazolin-4(3H)-one (0.055M) was dissolved in minimum amount of dil. HCl in a round bottom flask. Ammonium thiocyanate (0.11M, 9.68gm) was then added and the mixture refluxed for 7 hrs. A mixture of 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–Quinazolin-4(3H)-one (0.037M, 16.095gm) and fused sodium acetate (0.074M, 6.068gm) was taken in absolute alcohol (300ml) and refluxed for 10 hours to give 6-bromo-2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)-Quinazolin-4(3H)-one(2). These Compounds were evaluated for their antibacterial activity (against some gram positive and gram negative microorganism) and antifungal activity (against Candida albicans). Study Design: This study was experimentally design and the antibacterial activity was evaluated against some microorganism, Staphylococcus aureus, Bacillus species, Aspergillus Species, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and candida albicans Result: The compounds exhibited significant antibacterial activity with a zone of inhibition in the range of 10 – 20mm in comparison to control. Conclusions: From our findings, the compounds synthesized have higher antibacterial activities against Staphylococcus aureus, Aspergillus Species, as compared to Ciprofloxicin (CPX) and Ketonaxol (PEF) standard antibacterial drugs.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Synthesis and Antibacterial Activity of 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo Quinazolin-4(3H)-one from 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one
    AU  - Osarumwense Peter Osarodion
    Y1  - 2023/05/10
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ajmsp.20230801.11
    DO  - 10.11648/j.ajmsp.20230801.11
    T2  - American Journal of Materials Synthesis and Processing
    JF  - American Journal of Materials Synthesis and Processing
    JO  - American Journal of Materials Synthesis and Processing
    SP  - 1
    EP  - 5
    PB  - Science Publishing Group
    SN  - 2575-1530
    UR  - https://doi.org/10.11648/j.ajmsp.20230801.11
    AB  - Introduction: Broad range of quinazolinone biological properties including: antibacterial, anticancer, and anti-inflammatory activities motivate us to synthesis some quinazolinone derivatives. These heterocycles are profitable intermediates in organic synthesis. Methods/Experimental: The compound 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one (1), was produce when 2-(o-aminophenyl)-3-amino-6-bromo–Quinazolin-4(3H)-one (0.055M) was dissolved in minimum amount of dil. HCl in a round bottom flask. Ammonium thiocyanate (0.11M, 9.68gm) was then added and the mixture refluxed for 7 hrs. A mixture of 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–Quinazolin-4(3H)-one (0.037M, 16.095gm) and fused sodium acetate (0.074M, 6.068gm) was taken in absolute alcohol (300ml) and refluxed for 10 hours to give 6-bromo-2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)-Quinazolin-4(3H)-one(2). These Compounds were evaluated for their antibacterial activity (against some gram positive and gram negative microorganism) and antifungal activity (against Candida albicans). Study Design: This study was experimentally design and the antibacterial activity was evaluated against some microorganism, Staphylococcus aureus, Bacillus species, Aspergillus Species, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and candida albicans Result: The compounds exhibited significant antibacterial activity with a zone of inhibition in the range of 10 – 20mm in comparison to control. Conclusions: From our findings, the compounds synthesized have higher antibacterial activities against Staphylococcus aureus, Aspergillus Species, as compared to Ciprofloxicin (CPX) and Ketonaxol (PEF) standard antibacterial drugs.
    VL  - 8
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Chemical Science, Ondo State University of Science and Technology, Okitipupa, Nigeria

  • Sections