| Peer-Reviewed

Plasmonic Effects in Noble Metal-liquid Metal Based Nanoparticles

Received: 26 September 2019     Accepted: 21 October 2019     Published: 25 October 2019
Views:       Downloads:
Abstract

In the era of flexible and foldable devices, liquid metals emerge as a champion because they are being liquid at or near room temperature in addition to having high electrical and thermal conductivities. Plasmonic resonance occurs when conduction band electrons on metal nanoparticle surface collectively oscillates with same frequency as that irradiated light. This plasmonic resonance has attracted great attention because of large electromagnetic field enhancements near metal nanoparticle and the regulating resonance wavelength with change in material, size, shape and surrounding medium of metallic nanoparticle. Incorporation of liquid metal nanoparticles in plasmonics provides unique properties towards sensing (heart rate monitors etc.) which can become wearable. So, developing liquid metal based low-cost and large-scale plasmonic nanostructures may provide more optical efficiencies, fast kinetics, low temperature processing, versatility, easy embedding in structures and stretchy devices. Present work focuses on literature review highlighting the study of optical properties (absorption and scattering efficiencies, LSPR tunability, Figure of Merit (FOM) and Refractive Index Sensitivity (RIS)) of noble metal-liquid metal nanostructures and future scope of the field. Simulations can be performed on the basis of Mie Theory for spherical nanoparticles and by DDA/FDTD method for non-spherical particles or arrays. The results can help to optimize the plasmonic nanostructures of suitable material, size and shape according to the need of application in particular region of EM spectrum.

Published in Biomedical Sciences (Volume 5, Issue 3)
DOI 10.11648/j.bs.20190503.12
Page(s) 27-33
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

Noble Metals, Liquid Metals, Plasmonics, LSPR, Nanoparticles

References
[1] I. Freestone, N. Meeks, M. Sax, C. Higgitt, Gold bulletin. 40 (4), 270-277 (2007).
[2] M. Faraday, X. 147, 145-181 (1857).
[3] G. Mie, Ann. Phys. 25, 377 (1908).
[4] S. Link, M. B. Mohamed, M. A. El-Sayed, J. Phys. Chem. B. 103, 3073-3077 (1999).
[5] S. A. Maier, Plasmonics: fundamentals and applications, Springer Science & Business Media, Springer US 2007.
[6] J. S. Sekhon, S. S. Verma, Plasmonics. 6 (2), 311-317 (2011).
[7] S. Y. Shim, D. K. Lim, J. M. Nam, Nanomedicine. 3, 215–232 (2008).
[8] L. Wu, H. S. Chu, W. S. Koh, E. P. Li, Optics express. 18 (14), 14395-14400 (2010).
[9] G. Han, P. Ghosh, V. M. Rotello, Nanomedicine. 2, 113–123 (2007).
[10] V. Zharov, E. Galanzha, E. Shashkov, N. Khlebtsov, V. Tuchin, Opt. Lett. 31, 3623–3625 (2006).
[11] M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, N. J. Halas, ACS nano. 8 (1), 834-840 (2013).
[12] P. C. Wu, T. H. Kim, A. S. Brown, M. Losurdo, G. Bruno, H. O. Everitt, Applied Physics Letters. 90 (10), 103119 (2007).
[13] J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, F. Moreno, The Journal of Physical Chemistry C. 117 (38), 19606-19615 (2013).
[14] S. Hayashi, T. Okamoto, Journal of Physics D: Applied Physics. 45 (43), 433001 (2012).
[15] C. Noguez, The Journal of Physical Chemistry C. 111 (10), 3806-3819 (2007).
[16] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B. 107 (3) 668-677 (2003).
[17] L. Gao, Y. Zhang, V. Malyarchuk, L. Jia, K. I. Jang, R. C. Webb, D. Shah, (2014). Nature communications. 5, 4938.
[18] M. A. H. Khondoker, D. Sameoto, Smart Materials and Structures. 25 (9), 093001 (2016).
[19] T. Daeneke, K. Khoshmanesh, N. Mahmood, I. A. De Castro, D. Esrafilzadeh, S. J. Barrow, K. Kalantar-Zadeh, Chemical Society Reviews. 47 (11), 4073-4111 (2018).
[20] W. B. Jensen, Journal of Chemical Education. 80 (8), 952 (2003).
[21] D. R. Lide, (Ed.). CRC handbook of chemistry and physics (Vol. 85). CRC press 2004.
[22] V. Heine, Journal of Physics C: Solid State Physics. 1 (1), 222 (1968).
[23] M. Zhang, S. Yao, W. Rao, J. Liu, Materials Science and Engineering: R: Reports. 138, 1-35 (2019).
[24] Q. Wang, Y. Yu, K. Pan, J. Liu, IEEE Transactions on Biomedical Engineering. 61 (7), 2161-2166 (2014).
[25] B. F. Soares, F. Jonsson, N. I. Zheludev, Physical review letters. 98 (15), 153905 (2007).
[26] K. R. Nemade, S. A. Waghuley, Applied Nanoscience. 7 (8), 753-758 (2017).
[27] P. Laurent, P. Lemonde, E. Simon, G. Santarelli, A. Clairon, N. Dimarcq, C. Salomon, Eur. Phys. J. D. 3 (3), 201-204 (1998).
[28] E. A. Daza, S. K. Misra, A. S. Schwartz-Duval, A. Ohoka, C. Miller, D. Pan, ACS applied materials & interfaces. 8 (40), 26600-26612 (2016).
[29] R. G. Chaudhuri, S. Paria, Chemical reviews. 112 (4), 2373-2433 (2011).
[30] P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, A. S. Brown, J. Phys. Chem. C. 115 (28), 13571-13576 (2011).
[31] I. D. Tevis, L. B. Newcomb, M. Thuo, Langmuir. 30 (47), 14308-14313 (2014).
[32] T. Hirano, S. Nakakura, F. G. Rinaldi, E. Tanabe, W. N. Wang, T. Ogi, Advanced Powder Technology. 29 (10), 2512-2520 (2018).
[33] F. Yang, Y. Xu, M. Gu, S. Zhou, Y. Wang, K. Lu, Z. Wu, J. Mater. Chem. A, 6 (36), 17688-17697 (2018).
[34] M. Zhang, J. S. Yun, Q. Ma, J. Zheng, C. F. J. Lau, X. Deng, S. Huang, ACS Energy Lett. 2 (2), 438-444 (2017).
[35] P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, G. Videen, Nano Lett. 11 (9), 3531-3537 (2011).
[36] Y. Gutiérrez, M. Losurdo, P. García‐Fernández, M. Sainz de la Maza, F. González, A. S. Brown, F. Moreno, Advanced Optical Materials. 7 (13) 1900307 (2019).
[37] L. Yang, X. Zhao, S. Xu, Y. Lu, H. Chang, J. Liu, Science China Technological Sciences. (2019).
[38] P. Reineck, Y. Lin, B. C. Gibson, M. D. Dickey, A. D. Greentree, I. S. Maksymov, (2019). Scientific reports. 9 (1), 5345.
[39] S. Y. Tang, D. R. Mitchell, Q. Zhao, D. Yuan, G. Yun, Y. Zhang, W. Li, Matter. 1 (1), 192-204 (2019).
[40] J. Wang, S. Liu, A. Nahata, Optics express. 20 (11), 12119-12126 (2012).
[41] O. Peña-Rodríguez, P. P. González Pérez, U. Pal, International Journal of Spectroscopy. vol. 2011, Article ID 583743, 10 pages, (2011).
[42] M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Meas. Sci. Technol. 11 (1827), (2000).
[43] P. Monk, Finite element methods for Maxwell's equations. Oxford University Press (2003).
[44] A. Buffa, M. Costabel, C. Schwab, Numerische Mathematik. 92 (4), 679-710 (2002).
[45] B. T. Draine, P. J. Flatau, JOSA A. 11 (4), 1491-1499 (1994).
[46] S. D. Gedney, Synthesis Lectures on Computational Electromagnetics, Morgan & Claypool, 6 (1), 1-250 (2011).
[47] B. T. Draine, P. J. Flatau, JOSA A. 25 (11), 2693-2703 (2008).
[48] J. J. Goodman, B. T. Draine, P. J. Flatau, Optics Letters. 16 (15), 1198-1200 (1991).
[49] K. Yee, IEEE Transactions on antennas and propagation. 14 (3), 302-307 (1966).
[50] M. N. Sadiku, Numerical techniques in electromagnetics. CRC press 1992.
[51] K. S. Kunz, R. J. Luebbers, The finite difference time domain method for electromagnetics. CRC press 1993.
[52] A. Taflove, Advances in computational electromagnetics. Artech House, Norwood, MA 1998.
Cite This Article
  • APA Style

    Akanksha Bhardwaj, Suram Singh Verma. (2019). Plasmonic Effects in Noble Metal-liquid Metal Based Nanoparticles. Biomedical Sciences, 5(3), 27-33. https://doi.org/10.11648/j.bs.20190503.12

    Copy | Download

    ACS Style

    Akanksha Bhardwaj; Suram Singh Verma. Plasmonic Effects in Noble Metal-liquid Metal Based Nanoparticles. Biomed. Sci. 2019, 5(3), 27-33. doi: 10.11648/j.bs.20190503.12

    Copy | Download

    AMA Style

    Akanksha Bhardwaj, Suram Singh Verma. Plasmonic Effects in Noble Metal-liquid Metal Based Nanoparticles. Biomed Sci. 2019;5(3):27-33. doi: 10.11648/j.bs.20190503.12

    Copy | Download

  • @article{10.11648/j.bs.20190503.12,
      author = {Akanksha Bhardwaj and Suram Singh Verma},
      title = {Plasmonic Effects in Noble Metal-liquid Metal Based Nanoparticles},
      journal = {Biomedical Sciences},
      volume = {5},
      number = {3},
      pages = {27-33},
      doi = {10.11648/j.bs.20190503.12},
      url = {https://doi.org/10.11648/j.bs.20190503.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.bs.20190503.12},
      abstract = {In the era of flexible and foldable devices, liquid metals emerge as a champion because they are being liquid at or near room temperature in addition to having high electrical and thermal conductivities. Plasmonic resonance occurs when conduction band electrons on metal nanoparticle surface collectively oscillates with same frequency as that irradiated light. This plasmonic resonance has attracted great attention because of large electromagnetic field enhancements near metal nanoparticle and the regulating resonance wavelength with change in material, size, shape and surrounding medium of metallic nanoparticle. Incorporation of liquid metal nanoparticles in plasmonics provides unique properties towards sensing (heart rate monitors etc.) which can become wearable. So, developing liquid metal based low-cost and large-scale plasmonic nanostructures may provide more optical efficiencies, fast kinetics, low temperature processing, versatility, easy embedding in structures and stretchy devices. Present work focuses on literature review highlighting the study of optical properties (absorption and scattering efficiencies, LSPR tunability, Figure of Merit (FOM) and Refractive Index Sensitivity (RIS)) of noble metal-liquid metal nanostructures and future scope of the field. Simulations can be performed on the basis of Mie Theory for spherical nanoparticles and by DDA/FDTD method for non-spherical particles or arrays. The results can help to optimize the plasmonic nanostructures of suitable material, size and shape according to the need of application in particular region of EM spectrum.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Plasmonic Effects in Noble Metal-liquid Metal Based Nanoparticles
    AU  - Akanksha Bhardwaj
    AU  - Suram Singh Verma
    Y1  - 2019/10/25
    PY  - 2019
    N1  - https://doi.org/10.11648/j.bs.20190503.12
    DO  - 10.11648/j.bs.20190503.12
    T2  - Biomedical Sciences
    JF  - Biomedical Sciences
    JO  - Biomedical Sciences
    SP  - 27
    EP  - 33
    PB  - Science Publishing Group
    SN  - 2575-3932
    UR  - https://doi.org/10.11648/j.bs.20190503.12
    AB  - In the era of flexible and foldable devices, liquid metals emerge as a champion because they are being liquid at or near room temperature in addition to having high electrical and thermal conductivities. Plasmonic resonance occurs when conduction band electrons on metal nanoparticle surface collectively oscillates with same frequency as that irradiated light. This plasmonic resonance has attracted great attention because of large electromagnetic field enhancements near metal nanoparticle and the regulating resonance wavelength with change in material, size, shape and surrounding medium of metallic nanoparticle. Incorporation of liquid metal nanoparticles in plasmonics provides unique properties towards sensing (heart rate monitors etc.) which can become wearable. So, developing liquid metal based low-cost and large-scale plasmonic nanostructures may provide more optical efficiencies, fast kinetics, low temperature processing, versatility, easy embedding in structures and stretchy devices. Present work focuses on literature review highlighting the study of optical properties (absorption and scattering efficiencies, LSPR tunability, Figure of Merit (FOM) and Refractive Index Sensitivity (RIS)) of noble metal-liquid metal nanostructures and future scope of the field. Simulations can be performed on the basis of Mie Theory for spherical nanoparticles and by DDA/FDTD method for non-spherical particles or arrays. The results can help to optimize the plasmonic nanostructures of suitable material, size and shape according to the need of application in particular region of EM spectrum.
    VL  - 5
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab, India

  • Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab, India

  • Sections