Background. Siwei Xiaoliuyin, a traditional Chinese medicine, is effective in treating glioma, but its molecular mechanism of action is still unclear. In this paper, we will explore the molecular mechanism of Siwei Xiaoliuyin in the treatment of glioma through network pharmacology. Methods. The potential active components and molecular targets of Siwei Xiaoliuyin were collected through the pharmacological database and analysis platform of traditional Chinese medicine system and TCMID database; glioma-related target genes were obtained through the GenCards database, OMIM database and Disgenet database; the intersection of drug action targets and disease genes was extracted using R software, and Venn diagram was drawn; the key targets were imported into the String database to construct a protein interaction network; the key targets were imported into R software using clusterProfiler for GO and KEGG enrichment analysis; the main components of Siwei Xiaoliuyin were molecularly docked with the Hub gene by AutoDock Vina technology. Results. Siwei Xiaoliuyin consists of four components, which are Curcuma zedoaria, Tianlong, Solanum nigrum and Smilax glabra and a total of 26 potential active components and 56 targets were identified from it, 5750 glioma-related genes and 47 key target genes crossed between Siwei Xiaoliuyin and glioma. The results of enrichment analysis showed that GO entries involved fatty acid metabolic processes, response to steroid hormones and other processes. KEGG analysis identified key genes mainly enriched in PI3K-Akt signaling pathway, estrogen signaling pathway and HIF-1 signaling pathway, etc. The results of molecular docking showed that Diosgenin, the main component of Siwei Xiaoliuyin, docked well with the AHR gene. Conclusions. Through network pharmacology prediction, Siwei Xiaoliuyin may regulate multiple signaling pathways such as PI3K-Akt, estrogen and HIF-1 through multiple targets EGFR, ESR1, VEGFA, AHR and AR, thus affecting the function of multiple cells and playing an important role in the treatment of glioma.
Published in | Biomedical Sciences (Volume 8, Issue 4) |
DOI | 10.11648/j.bs.20220804.13 |
Page(s) | 126-137 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Siwei Xiaoliuyin, Glioma, Network Pharmacology, Molecular Docking
[1] | Sant, M., Minicozzi, P., Lagorio, S., Borge Johannesen, T., Marcos-Gragera, R., Francisci, S., & Group, E. W. (2012). Survival of European patients with central nervous system tumors. Int J Cancer, 131 (1), 173-185. doi: 10.1002/ijc.26335. |
[2] | Wang, Z., Su, G., Dai, Z., Meng, M., Zhang, H., Fan, F., Liu, Z., Zhang, L., Weygant, N., He, F., Fang, N., Zhang, L., & Cheng, Q. (2021). Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif, 54 (3), e12988. doi: 10.1111/cpr.12988. |
[3] | Van Meir, E. G., Hadjipanayis, C. G., Norden, A. D., Shu, H. K., Wen, P. Y., & Olson, J. J. (2010). Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin, 60 (3), 166-193. doi: 10.3322/caac.20069. |
[4] | Wang, J., Qi, F., Wang, Z., Zhang, Z., Pan, N., Huai, L., Qu, S., & Zhao, L. (2020). A review of traditional Chinese medicine for treatment of glioblastoma. Biosci Trends, 13 (6), 476-487. doi: 10.5582/bst.2019.01323. |
[5] | Wang, Z., Cheng, L., Shang, Z., Li, Z., Zhao, Y., Jin, W., Li, Y., Su, F., Mao, X., Chen, C., & Zhang, J. (2021). Network Pharmacology for Analyzing the Key Targets and Potential Mechanism of Wogonin in Gliomas. Front Pharmacol, 12 (646187. doi: 10.3389/fphar.2021.646187. |
[6] | Li, C., Guo, H., Wang, C., Zhan, W., Tan, Q., Xie, C., Sharma, A., Sharma, H. S., Chen, L., & Zhang, Z. (2021). Network pharmacological mechanism of Cinobufotalin against glioma. Prog Brain Res, 265 (119-137. doi: 10.1016/bs.pbr.2021.06.001. |
[7] | Chi, G., Xu, D., Zhang, B., & Yang, F. (2019). Matrine induces apoptosis and autophagy of glioma cell line U251 by regulation of circRNA-104075/BCL-9. Chem Biol Interact, 308 (198-205. doi: 10.1016/j.cbi.2019.05.030. |
[8] | Hadisaputri, Y. E., Miyazaki, T., Suzuki, S., Kubo, N., Zuhrotun, A., Yokobori, T., Abdulah, R., Yazawa, S., & Kuwano, H. (2015). Molecular characterization of antitumor effects of the rhizome extract from Curcuma zedoaria on human esophageal carcinoma cells. Int J Oncol, 47 (6), 2255-2263. doi: 10.3892/ijo.2015.3199. |
[9] | Chen, D., Yao, W. J., Zhang, X. L., Han, X. Q., Qu, X. Y., Ka, W. B., Sun, D. G., Wu, X. Z., & Wen, Z. Y. (2010). Effects of Gekko sulfated polysaccharide-protein complex on human hepatoma SMMC-7721 cells: inhibition of proliferation and migration. J Ethnopharmacol, 127 (3), 702-708. doi: 10.1016/j.jep.2009.12.003. |
[10] | Liu, F., Wang, J. G., Wang, S. Y., Li, Y., Wu, Y. P., & Xi, S. M. (2008). Antitumor effect and mechanism of Gecko on human esophageal carcinoma cell lines in vitro and xenografted sarcoma 180 in Kunming mice. World J Gastroenterol, 14 (25), 3990-3996. doi: 10.3748/wjg.14.3990. |
[11] | Song, Y., Wang, J. G., Li, R. F., Li, Y., Cui, Z. C., Duan, L. X., & Lu, F. (2012). Gecko crude peptides induce apoptosis in human liver carcinoma cells in vitro and exert antitumor activity in a mouse ascites H22 xenograft model. J Biomed Biotechnol, 2012 (743573. doi: 10.1155/2012/743573. |
[12] | Li, J. H., Li, S. Y., Shen, M. X., Qiu, R. Z., Fan, H. W., & Li, Y. B. (2021). Anti-tumor effects of Solanum nigrum L. extraction on C6 high-grade glioma. J Ethnopharmacol, 274 (114034. doi: 10.1016/j.jep.2021.114034. |
[13] | Liu, J. H., Lyu, D. Y., Zhou, H. M., Kuang, W. H., Chen, Z. X., & Zhang, S. J. (2020). [Study on molecular mechanism of Solanum nigrum in treatment of hepatocarcinoma based on network pharmacology and molecular docking]. Zhongguo Zhong Yao Za Zhi, 45 (1), 163-168. doi: 10.19540/j.cnki.cjcmm.20190807.401. |
[14] | Zhang, X., Yan, Z., Xu, T., An, Z., Chen, W., Wang, X., Huang, M., & Zhu, F. (2018). Solamargine derived from Solanum nigrum induces apoptosis of human cholangiocarcinoma QBC939 cells. Oncol Lett, 15 (5), 6329-6335. doi: 10.3892/ol.2018.8171. |
[15] | Zhao, Z., Jia, Q., Wu, M. S., Xie, X., Wang, Y., Song, G., Zou, C. Y., Tang, Q., Lu, J., Huang, G., Wang, J., Lin, D. C., Koeffler, H. P., Yin, J. Q., & Shen, J. (2018). Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3beta Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res, 24 (1), 130-144. doi: 10.1158/1078-0432.CCR-17-0692. |
[16] | Hao, G., Zheng, J., Huo, R., Li, J., Wen, K., Zhang, Y., & Liang, G. (2016). Smilax glabra Roxb targets Akt (p-Thr308) and inhibits Akt-mediated signaling pathways in SGC7901 cells. J Drug Target, 24 (6), 557-565. doi: 10.3109/1061186X.2015.1113540. |
[17] | Zhang, Z., Zhan, W., Chen, H., Chen, Y., Li, C., Yang, Y., Tan, Q., Xie, C., Sharma, H. S., & Sharma, A. (2020). Inhibitory effect of Siwei Xiaoliuyin on glioma angiogenesis in nude mice. Int Rev Neurobiol, 151 (243-252). doi: 10.1016/bs.irn.2020.03.008. |
[18] | Zhang, Z., Chen, Y., Chen, H., Yang, Y., Li, C., Zhan, W., Tan, Q., Xie, C., Sharma, H. S., & Sharma, A. (2020). New advances on the inhibition of Siwei Xiaoliuyin combined with Temozolomide in glioma based on the regulatory mechanism of miRNA21/221. Int Rev Neurobiol, 151 (99-110). doi: 10.1016/bs.irn.2020.03.003. |
[19] | Huang, R., Dong, R., Wang, N., Lan, B., Zhao, H., & Gao, Y. (2021). Exploring the Antiglioma Mechanisms of Luteolin Based on Network Pharmacology and Experimental Verification. Evid Based Complement Alternat Med, 2021 (7765658. doi: 10.1155/2021/7765658. |
[20] | Zhang, R., Zhu, X., Bai, H., & Ning, K. (2019). Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Front Pharmacol, 10 (123). doi: 10.3389/fphar.2019.00123. |
[21] | Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res, 44 (D1), D457-462. doi: 10.1093/nar/gkv1070. |
[22] | Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28 (1), 27-30. doi: 10.1093/nar/28.1.27. |
[23] | Lv, L., Zheng, L., Dong, D., Xu, L., Yin, L., Xu, Y., Qi, Y., Han, X., & Peng, J. (2013). Dioscin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: a potential new drug for treatment of glioblastoma multiforme. Food Chem Toxicol, 59 (657-669). doi: 10.1016/j.fct.2013.07.012. |
[24] | Khathayer, F., & Ray, S. K. (2020). Diosgenin as a Novel Alternative Therapy for Inhibition of Growth, Invasion, and Angiogenesis Abilities of Different Glioblastoma Cell Lines. Neurochem Res, 45 (10), 2336-2351. doi: 10.1007/s11064-020-03093-0. |
[25] | Woyengo, T. A., Ramprasath, V. R., & Jones, P. J. (2009). Anticancer effects of phytosterols. Eur J Clin Nutr, 63 (7), 813-820. doi: 10.1038/ejcn.2009.29. |
[26] | De Ford, C., Ulloa, J. L., Catalan, C. A. N., Grau, A., Martino, V. S., Muschietti, L. V., & Merfort, I. (2015). The sesquiterpene lactone polymatin B from Smallanthus sonchifolius induces different cell death mechanisms in three cancer cell lines. Phytochemistry, 117 (332-339). doi: 10.1016/j.phytochem.2015.06.020. |
[27] | Wang, C. J., Chou, M. Y., & Lin, J. K. (1989). Inhibition of growth and development of the transplantable C-6 glioma cells inoculated in rats by retinoids and carotenoids. Cancer Lett, 48 (2), 135-142. doi: 10.1016/0304-3835(89)90050-5. |
[28] | Xue, H., Yuan, G., Guo, X., Liu, Q., Zhang, J., Gao, X., Guo, X., Xu, S., Li, T., Shao, Q., Yan, S., & Li, G. (2016). A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy, 12 (7), 1129-1152. doi: 10.1080/15548627.2016.1178446. |
[29] | Choi, C., Gillespie, G. Y., Van Wagoner, N. J., & Benveniste, E. N. (2002). Fas engagement increases expression of interleukin-6 in human glioma cells. J Neurooncol, 56 (1), 13-19. doi: 10.1023/a:1014467626314. |
[30] | Wang, H., Lathia, J. D., Wu, Q., Wang, J., Li, Z., Heddleston, J. M., Eyler, C. E., Elderbroom, J., Gallagher, J., Schuschu, J., MacSwords, J., Cao, Y., McLendon, R. E., Wang, X. F., Hjelmeland, A. B., & Rich, J. N. (2009). Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells, 27 (10), 2393-2404. doi: 10.1002/stem.188. |
[31] | Maire, C. L., & Ligon, K. L. (2014). Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro Oncol, 16 Suppl 8 (viii1-6). doi: 10.1093/neuonc/nou294. |
[32] | Takenaka, M. C., Gabriely, G., Rothhammer, V., Mascanfroni, I. D., Wheeler, M. A., Chao, C. C., Gutierrez-Vazquez, C., Kenison, J., Tjon, E. C., Barroso, A., Vandeventer, T., de Lima, K. A., Rothweiler, S., Mayo, L., Ghannam, S., Zandee, S., Healy, L., Sherr, D., Farez, M. F., Prat, A., Antel, J., Reardon, D. A., Zhang, H., Robson, S. C., Getz, G., Weiner, H. L., & Quintana, F. J. (2019). Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci, 22 (5), 729-740. doi: 10.1038/s41593-019-0370-y. |
[33] | Colardo, M., Segatto, M., & Di Bartolomeo, S. (2021). Targeting RTK-PI3K-mTOR Axis in Gliomas: An Update. Int J Mol Sci, 22 (9), doi: 10.3390/ijms22094899. |
[34] | Eckerdt, F. D., Bell, J. B., Gonzalez, C., Oh, M. S., Perez, R. E., Mazewski, C., Fischietti, M., Goldman, S., Nakano, I., & Platanias, L. C. (2020). Combined PI3Kalpha-mTOR Targeting of Glioma Stem Cells. Sci Rep, 10 (1), 21873. doi: 10.1038/s41598-020-78788-z. |
[35] | Sato, A., Sunayama, J., Matsuda, K., Tachibana, K., Sakurada, K., Tomiyama, A., Kayama, T., & Kitanaka, C. (2010). Regulation of neural stem/progenitor cell maintenance by PI3K and mTOR. Neurosci Lett, 470 (2), 115-120. doi: 10.1016/j.neulet.2009.12.067. |
[36] | Chen, T. C., Chuang, J. Y., Ko, C. Y., Kao, T. J., Yang, P. Y., Yu, C. H., Liu, M. S., Hu, S. L., Tsai, Y. T., Chan, H., Chang, W. C., & Hsu, T. I. (2020). AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol, 30 (101413. doi: 10.1016/j.redox.2019.101413. |
[37] | Li, J., Fu, X., Cao, S., Li, J., Xing, S., Li, D., Dong, Y., Cardin, D., Park, H. W., Mauvais-Jarvis, F., & Zhang, H. (2018). Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27). J Biol Chem, 293 (33), 12719-12729. doi: 10.1074/jbc.RA118.003075. |
[38] | Li, Y., Orahoske, C. M., Geldenhuys, W. J., Bhattarai, A., Sabbagh, A., Bobba, V., Salem, F. M., Zhang, W., Shukla, G. C., Lathia, J. D., Wang, B., & Su, B. (2021). Small-Molecule HSP27 Inhibitor Abolishes Androgen Receptors in Glioblastoma. J Med Chem, 64 (3), 1570-1583. doi: 10.1021/acs.jmedchem.0c01537. |
[39] | Rodriguez-Lozano, D. C., Pina-Medina, A. G., Hansberg-Pastor, V., Bello-Alvarez, C., & Camacho-Arroyo, I. (2019). Testosterone Promotes Glioblastoma Cell Proliferation, Migration, and Invasion Through Androgen Receptor Activation. Front Endocrinol (Lausanne), 10 (16). doi: 10.3389/fendo.2019.00016. |
[40] | Tateishi, K., Nakamura, T., Juratli, T. A., Williams, E. A., Matsushita, Y., Miyake, S., Nishi, M., Miller, J. J., Tummala, S. S., Fink, A. L., Lelic, N., Koerner, M. V. A., Miyake, Y., Sasame, J., Fujimoto, K., Tanaka, T., Minamimoto, R., Matsunaga, S., Mukaihara, S., Shuto, T., Taguchi, H., Udaka, N., Murata, H., Ryo, A., Yamanaka, S., Curry, W. T., Dias-Santagata, D., Yamamoto, T., Ichimura, K., Batchelor, T. T., Chi, A. S., Iafrate, A. J., Wakimoto, H., & Cahill, D. P. (2019). PI3K/AKT/mTOR Pathway Alterations Promote Malignant Progression and Xenograft Formation in Oligodendroglial Tumors. Clin Cancer Res, 25 (14), 4375-4387. doi: 10.1158/1078-0432.CCR-18-4144. |
[41] | Rodon, J., Dienstmann, R., Serra, V., & Tabernero, J. (2013). Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol, 10 (3), 143-153. doi: 10.1038/nrclinonc.2013.10. |
[42] | Klingler, S., Guo, B., Yao, J., Yan, H., Zhang, L., Vaseva, A. V., Chen, S., Canoll, P., Horner, J. W., Wang, Y. A., Paik, J. H., Ying, H., & Zheng, H. (2015). Development of Resistance to EGFR-Targeted Therapy in Malignant Glioma Can Occur through EGFR-Dependent and -Independent Mechanisms. Cancer Res, 75 (10), 2109-2119. doi: 10.1158/0008-5472.CAN-14-3122. |
[43] | Zheng, H. C. (2017). The molecular mechanisms of chemoresistance in cancers. Oncotarget, 8 (35), 59950-59964. doi: 10.18632/oncotarget.19048. |
[44] | Wang, P., Zhao, L., Gong, S., Xiong, S., Wang, J., Zou, D., Pan, J., Deng, Y., Yan, Q., Wu, N., & Liao, B. (2021). HIF1alpha/HIF2alpha-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia. Cell Death Dis, 12 (4), 312. doi: 10.1038/s41419-021-03598-8. |
[45] | Sareddy, G. R., Nair, B. C., Gonugunta, V. K., Zhang, Q. G., Brenner, A., Brann, D. W., Tekmal, R. R., & Vadlamudi, R. K. (2012). Therapeutic significance of estrogen receptor beta agonists in gliomas. Mol Cancer Ther, 11 (5), 1174-1182. doi: 10.1158/1535-7163.MCT-11-0960. |
[46] | Sareddy, G. R., Pratap, U. P., Venkata, P. P., Zhou, M., Alejo, S., Viswanadhapalli, S., Tekmal, R. R., Brenner, A. J., & Vadlamudi, R. K. (2021). Activation of estrogen receptor beta signaling reduces stemness of glioma stem cells. Stem Cells, 39 (5), 536-550. doi: 10.1002/stem.3337. |
[47] | Zhang, S., Sheng, H., Zhang, X., Qi, Q., Chan, C. B., Li, L., Shan, C., & Ye, K. (2019). Cellular energy stress induces AMPK-mediated regulation of glioblastoma cell proliferation by PIKE-A phosphorylation. Cell Death Dis, 10 (3), 222. doi: 10.1038/s41419-019-1452-1. |
[48] | Guo, D., Hildebrandt, I. J., Prins, R. M., Soto, H., Mazzotta, M. M., Dang, J., Czernin, J., Shyy, J. Y., Watson, A. D., Phelps, M., Radu, C. G., Cloughesy, T. F., & Mischel, P. S. (2009). The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc Natl Acad Sci U S A, 106 (31), 12932-12937. doi: 10.1073/pnas.0906606106. |
[49] | Chhipa, R. R., Fan, Q., Anderson, J., Muraleedharan, R., Huang, Y., Ciraolo, G., Chen, X., Waclaw, R., Chow, L. M., Khuchua, Z., Kofron, M., Weirauch, M. T., Kendler, A., McPherson, C., Ratner, N., Nakano, I., Dasgupta, N., Komurov, K., & Dasgupta, B. (2018). AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol, 20 (7), 823-835. doi: 10.1038/s41556-018-0126-z. |
APA Style
Biaogang Han, Xiaohong Wu, Xiaopei Zhang, Shihua Liu, Yongqing Shen, et al. (2022). Discussion on Molecular Mechanism of Siwei Xiaoliuyin in Treating Glioma Based on Network Pharmacology and Molecular Docking. Biomedical Sciences, 8(4), 126-137. https://doi.org/10.11648/j.bs.20220804.13
ACS Style
Biaogang Han; Xiaohong Wu; Xiaopei Zhang; Shihua Liu; Yongqing Shen, et al. Discussion on Molecular Mechanism of Siwei Xiaoliuyin in Treating Glioma Based on Network Pharmacology and Molecular Docking. Biomed. Sci. 2022, 8(4), 126-137. doi: 10.11648/j.bs.20220804.13
@article{10.11648/j.bs.20220804.13, author = {Biaogang Han and Xiaohong Wu and Xiaopei Zhang and Shihua Liu and Yongqing Shen and Aixia Sui}, title = {Discussion on Molecular Mechanism of Siwei Xiaoliuyin in Treating Glioma Based on Network Pharmacology and Molecular Docking}, journal = {Biomedical Sciences}, volume = {8}, number = {4}, pages = {126-137}, doi = {10.11648/j.bs.20220804.13}, url = {https://doi.org/10.11648/j.bs.20220804.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.bs.20220804.13}, abstract = {Background. Siwei Xiaoliuyin, a traditional Chinese medicine, is effective in treating glioma, but its molecular mechanism of action is still unclear. In this paper, we will explore the molecular mechanism of Siwei Xiaoliuyin in the treatment of glioma through network pharmacology. Methods. The potential active components and molecular targets of Siwei Xiaoliuyin were collected through the pharmacological database and analysis platform of traditional Chinese medicine system and TCMID database; glioma-related target genes were obtained through the GenCards database, OMIM database and Disgenet database; the intersection of drug action targets and disease genes was extracted using R software, and Venn diagram was drawn; the key targets were imported into the String database to construct a protein interaction network; the key targets were imported into R software using clusterProfiler for GO and KEGG enrichment analysis; the main components of Siwei Xiaoliuyin were molecularly docked with the Hub gene by AutoDock Vina technology. Results. Siwei Xiaoliuyin consists of four components, which are Curcuma zedoaria, Tianlong, Solanum nigrum and Smilax glabra and a total of 26 potential active components and 56 targets were identified from it, 5750 glioma-related genes and 47 key target genes crossed between Siwei Xiaoliuyin and glioma. The results of enrichment analysis showed that GO entries involved fatty acid metabolic processes, response to steroid hormones and other processes. KEGG analysis identified key genes mainly enriched in PI3K-Akt signaling pathway, estrogen signaling pathway and HIF-1 signaling pathway, etc. The results of molecular docking showed that Diosgenin, the main component of Siwei Xiaoliuyin, docked well with the AHR gene. Conclusions. Through network pharmacology prediction, Siwei Xiaoliuyin may regulate multiple signaling pathways such as PI3K-Akt, estrogen and HIF-1 through multiple targets EGFR, ESR1, VEGFA, AHR and AR, thus affecting the function of multiple cells and playing an important role in the treatment of glioma.}, year = {2022} }
TY - JOUR T1 - Discussion on Molecular Mechanism of Siwei Xiaoliuyin in Treating Glioma Based on Network Pharmacology and Molecular Docking AU - Biaogang Han AU - Xiaohong Wu AU - Xiaopei Zhang AU - Shihua Liu AU - Yongqing Shen AU - Aixia Sui Y1 - 2022/11/29 PY - 2022 N1 - https://doi.org/10.11648/j.bs.20220804.13 DO - 10.11648/j.bs.20220804.13 T2 - Biomedical Sciences JF - Biomedical Sciences JO - Biomedical Sciences SP - 126 EP - 137 PB - Science Publishing Group SN - 2575-3932 UR - https://doi.org/10.11648/j.bs.20220804.13 AB - Background. Siwei Xiaoliuyin, a traditional Chinese medicine, is effective in treating glioma, but its molecular mechanism of action is still unclear. In this paper, we will explore the molecular mechanism of Siwei Xiaoliuyin in the treatment of glioma through network pharmacology. Methods. The potential active components and molecular targets of Siwei Xiaoliuyin were collected through the pharmacological database and analysis platform of traditional Chinese medicine system and TCMID database; glioma-related target genes were obtained through the GenCards database, OMIM database and Disgenet database; the intersection of drug action targets and disease genes was extracted using R software, and Venn diagram was drawn; the key targets were imported into the String database to construct a protein interaction network; the key targets were imported into R software using clusterProfiler for GO and KEGG enrichment analysis; the main components of Siwei Xiaoliuyin were molecularly docked with the Hub gene by AutoDock Vina technology. Results. Siwei Xiaoliuyin consists of four components, which are Curcuma zedoaria, Tianlong, Solanum nigrum and Smilax glabra and a total of 26 potential active components and 56 targets were identified from it, 5750 glioma-related genes and 47 key target genes crossed between Siwei Xiaoliuyin and glioma. The results of enrichment analysis showed that GO entries involved fatty acid metabolic processes, response to steroid hormones and other processes. KEGG analysis identified key genes mainly enriched in PI3K-Akt signaling pathway, estrogen signaling pathway and HIF-1 signaling pathway, etc. The results of molecular docking showed that Diosgenin, the main component of Siwei Xiaoliuyin, docked well with the AHR gene. Conclusions. Through network pharmacology prediction, Siwei Xiaoliuyin may regulate multiple signaling pathways such as PI3K-Akt, estrogen and HIF-1 through multiple targets EGFR, ESR1, VEGFA, AHR and AR, thus affecting the function of multiple cells and playing an important role in the treatment of glioma. VL - 8 IS - 4 ER -