Plasma immersion ion implantation (PIII) of nitrogen has been performed on three austenitic stainless steels namely, Type 304L SS, MnSS-1 (16%Cr-6%Mn-4Ni) and MnSS-2 (16%Cr-9%Mn) with at three different temperatures namely, 250, 380 and 500°C for 3 h. The GXRD studies shows that mixed iron nitride phases were formed along with expanded austenitic, when sample implanted at 250°C and 380°C. These nitrides are with different stoichiometry along the thickness and their formation is less favorable in nickel free Mn alloy at lower implantation temperature and timing (250°C for 3 h). On higher implantation condition (500°C, 6 h), Ni promotes the ′ formation and Mn suppress the ′ formation. Microhardness measurements revealed a significant increase in hardness after PIII treatment for all the alloys under investigation, but it is more effective in Ni free Mn containing SS.
Published in | Colloid and Surface Science (Volume 2, Issue 1) |
DOI | 10.11648/j.css.20170201.14 |
Page(s) | 26-36 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Plasma Immersion Ion Implantation, XRD, GXRD, Hardness
[1] | W. Ensinger, Surface & Coating Technolology, 100-110 (1998) 341-352. |
[2] | Linda Gil, Sonia Brühl, Lorena Jiménez, Ovídio Leon, Rafael Guevara, Mariana and H. Staia, Surf. Coat. Technol. 201 (2006) 4424–4429. |
[3] | Xiubo Tian and Paul K. Chu, Scripta mater. 43 (2000) 417-422. |
[4] | P. Saravanan, V.S. Raja and S. Mukherjee, Surf. Coat. Technol.201 (1998) 8131-8135. |
[5] | Lei M. K. and Zhu X. M., Biomaterials,22 (2001) 641-647. |
[6] | J.R. Conrad, R.A. Dodd, F.J. Worzala, and X. Qiu, Surface & Coating Technolology, 36, (1988) 927-937. |
[7] | S. Mandl, D. Manova, H. Neumann, M.T. Pham, E. Richter, and B. Rauschenbach, Surf. Coat. Technol. 200 (2005) 104-108. |
[8] | L. Escalada, J. Lutz, S. Mändl, D. Manova, H. Neumann, and S. Simison, Surf. Coat. Technol.211 (2012) 76-79. |
[9] | Yanhui Zhao, Baohai Yu, Limin Dong, Hao Du, and Jinquan Xiao, Surf. Coat. Technol.210 (2012) 90-96. |
[10] | A. Fossati, F. Borgioli, E. Galvanetto, and T. Bacci, Corros. Sci.48 (2006) 1513–1527. |
[11] | K.S. Wang, H.L. Che, M.K. Lei, Surf. Coat. Technol.288 (2016) 30-35. |
[12] | M. CASTRO-COLIN, W. DURRER, J. A. LÓPEZ, E. RAMIREZ-HOMS, Journal of Iron and Steel Research, International, 23, 4, (2016), 380-384. |
[13] | Y. Li, Z. Wang, L. Wang, Applied Surface Science, 298, (2014), 243-250. |
[14] | D. Manova, S. Mändl, H. Neumann, B. Rauschenbach, Surf. Coat. Technol.256, (2014), 64-72. |
[15] | K. Ram Mohan Rao, S. Mukherjee, P.M. Raole, and I. Manna, Surf. Coat. Technol.200 (2005) 2049-2057. |
[16] | P. R. Levey, and A. Van Bennekom, Corrosion, 51 (1995) 911-921. |
[17] | R.D. Pehlke, and J.F. Elliatt, Transactions of Metallurgical Society of AIME, (1960) 218, 1088-1101. |
[18] | H. Pelletier, D. Muller, P. Mille, A. Cornet, and J.J. Grob Surf. Coat. Technol. 151 - 152 (2002) 377-382. |
[19] | Y. Li, L. Wang, J. Xu, and D. Zhang, Surf. Coat. Technol.206 (2012) 2430-2437. |
[20] | G.A. Collins, R. Hutchings, K.T. Short, J. Tendys, X. Li, and M. Samandi, Surf. Coat. Technol. 74-75 (1995) 417-424. |
[21] | J. Wang, J. Xiong, Q. Peng, H. Fan, Y. Wang, G. Li, and B. Shen, Mater. Charact. 60 (2009) 97-203. |
[22] | Y. Li, L. Wang, J. Xu, and D. Zhang, Surf. Coat. Technol.206 (2012) 2430-2437. |
[23] | M. Samandi, B. A Shedden, D. J. Smith, G. A.Collins, R. Hutchings and J. Tendys, Surface & Coatings Technology,59 (1993) 261-266. |
[24] | S. Mukherjee, J. Chakraborty, S. Gupta, P. M. Raole, P. I. John, K. R. M. Rao and I. Manna, Surface & Coating Technology, 156 (2002) 103-109. |
[25] | P.A. Dearnley, A. Namver, G. G. A. Hibberd and T. Bell, in: E. Broszeit, W.D. Munz, H. Oechsner, K.-T. Rie, G.K. Wolf (Eds.), Plasma Surface Engineering, vol. 1, DGM Informationsgesellschaft, Oberursel, “Proceedings of the 1st International Conference on Plasma Surface Engineering, Garmisch – Partenkirchen”, 1989, p. 219. Vol 1 (1989) 219-226. |
[26] | K. Ichii, K. Fujimura and T. Takase, E. Broszeit, W.D. Munz, H. Oechsner, K.-T. Rie, G.K. Wolf(Eds.), Plasma Surface Engineering, vol. 1, DGM Informationsgesellschaft, Oberursel, “Proceedings of the 1st International Conference on Plasma Surface Engineering, Garmisch –Partenkirchen”, (1989) 1187-1192. |
[27] | E. Menthe and K. T. Rie, Surface & Coatings Technology, 116-119 (1999) 199-204. |
[28] | D. J. Haen., C. Quaeyhaegens, G. Knuyt, L. De Schepper, L.M. Stals, and Van M. Stappen, Surface and Coating Technology, 60 (1993)468-473. |
[29] | F. Borgioli, A. Fossati, G. Matassini, E. Galvanetto, and T. Bacci, Surf. Coat. Technol. 204 (2010) 3410-3417. |
[30] | J. Talonen, and H. Hänninen, Acta Mater. 55, 18, (2007) 6108-18. |
[31] | N. Suutala, Metallurgical Transaction A, (1982) 13A, 2121-2130. |
[32] | C. Qiu, Metallurgical Transaction A, (1993) 24A, 629-645. |
APA Style
Pandurangan Saravanan, Vngaranahalli Srinivasan Raja. (2017). Surface Characterization of Plasma Immersion Nitrogen Ion Implanted Austenitic Stainless Steel. Colloid and Surface Science, 2(1), 26-36. https://doi.org/10.11648/j.css.20170201.14
ACS Style
Pandurangan Saravanan; Vngaranahalli Srinivasan Raja. Surface Characterization of Plasma Immersion Nitrogen Ion Implanted Austenitic Stainless Steel. Colloid Surf. Sci. 2017, 2(1), 26-36. doi: 10.11648/j.css.20170201.14
@article{10.11648/j.css.20170201.14, author = {Pandurangan Saravanan and Vngaranahalli Srinivasan Raja}, title = {Surface Characterization of Plasma Immersion Nitrogen Ion Implanted Austenitic Stainless Steel}, journal = {Colloid and Surface Science}, volume = {2}, number = {1}, pages = {26-36}, doi = {10.11648/j.css.20170201.14}, url = {https://doi.org/10.11648/j.css.20170201.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.css.20170201.14}, abstract = {Plasma immersion ion implantation (PIII) of nitrogen has been performed on three austenitic stainless steels namely, Type 304L SS, MnSS-1 (16%Cr-6%Mn-4Ni) and MnSS-2 (16%Cr-9%Mn) with at three different temperatures namely, 250, 380 and 500°C for 3 h. The GXRD studies shows that mixed iron nitride phases were formed along with expanded austenitic, when sample implanted at 250°C and 380°C. These nitrides are with different stoichiometry along the thickness and their formation is less favorable in nickel free Mn alloy at lower implantation temperature and timing (250°C for 3 h). On higher implantation condition (500°C, 6 h), Ni promotes the ′ formation and Mn suppress the ′ formation. Microhardness measurements revealed a significant increase in hardness after PIII treatment for all the alloys under investigation, but it is more effective in Ni free Mn containing SS.}, year = {2017} }
TY - JOUR T1 - Surface Characterization of Plasma Immersion Nitrogen Ion Implanted Austenitic Stainless Steel AU - Pandurangan Saravanan AU - Vngaranahalli Srinivasan Raja Y1 - 2017/01/31 PY - 2017 N1 - https://doi.org/10.11648/j.css.20170201.14 DO - 10.11648/j.css.20170201.14 T2 - Colloid and Surface Science JF - Colloid and Surface Science JO - Colloid and Surface Science SP - 26 EP - 36 PB - Science Publishing Group SN - 2578-9236 UR - https://doi.org/10.11648/j.css.20170201.14 AB - Plasma immersion ion implantation (PIII) of nitrogen has been performed on three austenitic stainless steels namely, Type 304L SS, MnSS-1 (16%Cr-6%Mn-4Ni) and MnSS-2 (16%Cr-9%Mn) with at three different temperatures namely, 250, 380 and 500°C for 3 h. The GXRD studies shows that mixed iron nitride phases were formed along with expanded austenitic, when sample implanted at 250°C and 380°C. These nitrides are with different stoichiometry along the thickness and their formation is less favorable in nickel free Mn alloy at lower implantation temperature and timing (250°C for 3 h). On higher implantation condition (500°C, 6 h), Ni promotes the ′ formation and Mn suppress the ′ formation. Microhardness measurements revealed a significant increase in hardness after PIII treatment for all the alloys under investigation, but it is more effective in Ni free Mn containing SS. VL - 2 IS - 1 ER -