| Peer-Reviewed

Geochemistry and Mantle Potential Temperature of Late Cenozoic Basaltic Rocks from the Northern and Western Continental Margins of the South China Sea

Received: 9 August 2020     Accepted: 25 August 2020     Published: 21 September 2020
Views:       Downloads:
Abstract

Deep dynamic processes of the evolution of the South China Sea (SCS) are recorded by the large-scale magmatism in the SCS and its surrounding regions. The geochemical analysis of whole-rock and olivine phenocryst was conducted on the Late Cenozoic basaltic rocks, which are exposed in the continental margins of the northern (the Leiqiong Area) and western (the Kontum Area) SCS. Consistent geochemical characteristics were shown on the basaltic rocks based on the results, which are similar to OIB from intra-plate environment. Mantle potential temperature (Tp ) was measured by MgO of parental magma compositions and by olivine-liquid equilibria thermometry, with an average of 1489°C beneath the Leizhou Peninsula, 1555°C beneath the Northern Hainan and 1458°C beneath the Kontum Area. Compared with Tp of SCS MORB, the mantle excess temperature is about 78–175°C in the studied areas. The highest excess temperature within typical plume-affected regions. Our results provide the evidence based on temperature for the existence of the Hainan Plume. The data of highest Tp under the North Hainan may indicate the upper reaches of mantle plume. The mantle source of post-spreading magmatism in SCS and its surrounding region is likely to be correlated to that of pre-spreading volcanic activities in the northern continental margins.

Published in Earth Sciences (Volume 9, Issue 5)
DOI 10.11648/j.earth.20200905.14
Page(s) 178-191
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2020. Published by Science Publishing Group

Keywords

Hainan Plume, Mantle Potential Temperature, Geochemistry, The South China Sea, Post-Spreading

References
[1] Taylor, B.; Hayes, D. E. Origin and history of the South China Sea basin. GMS 1983, 27, 23–56.
[2] Briais, A.; Patriat, P.; Tapponnier, P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth 1993, 98, 6299–6328. doi: 10.1029/92jb02280.
[3] Yan, P.; Deng, H.; Liu, H.; Zhang, Z.; Jiang, Y. The temporal and spatial distribution of volcanism in the South China Sea region. Journal of Asian Earth Sciences 2006, 27, 647–659. doi: 10.1016/j.jseaes.2005.06.005.
[4] Xu, Y. G.; Wei, J. X.; Qiu, H. N.; Zhang, H. H.; Huang, X. L. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: Preliminary results and a research design. Chinese Science Bulletin 2012, 57, 3150–3164. doi: 10.1007/s11434-011-4921-1.
[5] Chung, S. L.; Cheng, H.; Jahn, B. M.; O’Reilly, S. Y.; Zhu, B. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening. Lithos 1997, 40, 203–220. doi: 10.1016/s0024-4937(97)00028-5.
[6] Zhu, B. Q.; Wang, H. F.; Chen, Y. W.; Chang, X. Y.; Hu, Y. G.; Xie, J. Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia. Journal of Asian Earth Sciences 2004, 24, 163–175. doi: 10.1016/j.jseaes.2003.10.006.
[7] Zhang, W.; Fang, N.; Yuan, X.; Cui, L. Geochemical and Mineralogical Investigation on Different Types of Cenozoic Basalts in the Sanshui Basin: Implications for Magma Mixing Processes. Journal of Earth Science 2019, 30, 754–762. doi: 10.1007/s12583-019-1208-y.
[8] Sun, K.; Wu, T.; Liu, X.; Chen, X. G.; Li, C. F. Lithogeochemistry of the Mid-Ocean Ridge Basalts near the Fossil Ridge of the Southwest Sub-Basin, South China Sea. Minerals 2020, 10, 465. doi: 10.3390/min10050465.
[9] Yu, X.; Liu, Z. Non-mantle-plume process caused the initial spreading of the South China Sea. Scientific Reports 2020, 10, 1–10. doi: 10.1038/s41598-020-65174-y.
[10] Flower, M. F.; Zhang, M.; Chen, C. Y.; Tu, K.; Xie, G. Magmatism in the South China Basin. 2. Post-spreading Quaternary basalts from Hainan Island, south China. Chemical Geology 1992, 97, 65–87. doi: 10.1016/0009-2541(92)90136-S.
[11] Zhu, B.; Wang, H. Nd-Sr-Pb isotopic and chemical evidence for the volcanism with MORB-OIB source characteristics in the Leiqiong Area, China. Geochemic 1989, 3, 93–201. doi: 10.19700/j.0379-1726.1989.03.001.
[12] Tu, K.; Flower, M. F.; Carlson, R. W.; Ming Zhang.; Guanghong Xie. Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): implications for a subcontinental lithosphere Dupal source. Geology 1991, 19, 567–569. doi: 10.1130/0091-7613(1991) 019<0567:SNAPIC>2.3.CO;2.
[13] Hoang, N.; Flower, M. F.; Carlson, R. W. Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta 1996, 60, 4329–4351. doi: 10.1016/S0016-7037(96)00247-5.
[14] Zou, H.; Fan, Q. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. Lithos 2010, 116, 145–152. doi: 10.1016/j.lithos.2010.01.010.
[15] Wang, X. C.; Li, Z. X.; Li, X. H.; Li, J.; Liu, Y.; Long, W. G.; Zhou, J. B.; Wang, F. Temperature, pressure, and composition of the mantle source region of late cenozoic basalts in Hainan Island, SE Asia: A consequence of a young thermal mantle plume close to subduction zones? Journal of Petrology 2012, 53, 177–233. doi: 10.1093/petrology/egr061.
[16] Koszowska, E.; Wolska, A.; Zuchiewicz, W.; Cuong, N. Q.; Pécskay, Z. Crustal contamination of Late Neogene basalts in the Dien Bien Phu Basin, NW Vietnam: Some insights from petrological and geochronological studies. Journal of Asian Earth Sciences 2007, 29, 1–17. doi: 10.1016/j.jseaes.2005.12.003.
[17] Hoàng, N.; Flower, M. F.; o.ng Chí, C. T.; Xuân, P. T.; Quý, H. V.; Son, T. T. Collision-induced basalt eruptions at Pleiku and BuÔn Mê Thuôt, south-central Viet Nam. Journal of Geodynamics 2013, 69, 65–83. doi: 10.1016/j.jog.2012.03.012.
[18] Hoang, N.; Flower, M. Petrogenesis of cenozoic basalts from Vietnam: Implication for origins of a ’diffuse igneous province’. Journal of Petrology 1998, 39, 369–395. doi: 10.1093/petroj/39.3.369.
[19] Wang, X. c.; Li, Z. X.; Li, X. H.; Li, J.; Xu, Y. G.; Li, X. H. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics. Earth and Planetary Science Letters 2013, 377-378, 248–259. doi: 10.1016/j.epsl.2013.07.003.
[20] An, A. R.; Choi, S. H.; Yu, Y.; Lee, D. C. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam. Lithos 2017, 272-273, 192–204. doi: 10.1016/j.lithos.2016.12.008.
[21] Yang, S.; Fang, N. Geochemical variation of volcanic rocks from the South China Sea and neighboring land: Implication for magmatic process and mantle structure. Acta Oceanologica Sinica 2015, 34, 112–124. doi: 10.1007/s13131-015-0759-8.
[22] Zhang, Y.; Yu, K.; Fan, T.; Yue, Y.; Wang, R.; Jiang, W.; Xu, S.; Wang, Y. Geochemistry and petrogenesis of Quaternary basalts from Weizhou Island, northwestern South China Sea: Evidence for the Hainan plume. Lithos 2020, 362-363, 105493. doi: 10.1016/j.lithos.2020.105493.
[23] Lebedev, S.; Nolet, G. Upper mantle beneath Southeast Asia from S velocity tomography. Journal of Geophysical Research: Solid Earth 2003, 108. doi: 10.1029/2000jb000073.
[24] Montelli, R.; Nolet, G.; Dahlen, F. A.; Masters, G. A catalogue of deep mantle plumes: New results from finitefrequency tomography. Geochemistry, Geophysics, Geosystems 2006, 7. doi: 10.1029/2006GC001248.
[25] Huang, J.; Zhao, D. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth 2006, 111, 1–21. doi: 10.1029/2005JB004066.
[26] Xia, S.; Zhao, D.; Sun, J.; Huang, H. Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Research 2016, 36, 46–56. doi: 10.1016/j.gr.2016.05.003.
[27] McKenzie, D.; Jackson, J.; Priestley, K. Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters 2005, 233, 337–349. doi: 10.1016/j.epsl.2005.02.005.
[28] Putirka, K. D. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 2008, 69, 61–120. doi: 10.2138/rmg.2008.69.3.
[29] Herzberg, C.; Asimow, P. D.; Arndt, N.; Niu, Y.; Lesher, C. M.; Fitton, J. G.; Cheadle, M. J.; Saunders, A. D. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems 2007, 8. doi: 10.1029/2006GC001390.
[30] Campbell, I. H. Identification of ancient mantle plumes. In Mantle plumes: their identification through time; Geological Society of America, 2001. doi: 10.1130/0-8137-2352-3.5.
[31] Xu, Y. G.; He, B.; Huang, X.; Luo, Z.; Chung, S. L.; Xiao, L.; Zhu, D.; Shao, H.; Fan, W. M.; Xu, J.; Wang, Y. J. Identification of mantle plumes in the Emeishan Large Igneous Province. Episodes 2007, 30, 32–42. doi: 10.18814/epiiugs/2007/v30i1/005.
[32] Hoang, T. H. A.; Choi, S. H.; Yu, Y.; Pham, T. H.; Nguyen, K. H.; Ryu, J. S. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam. Lithos 2018, 296-299, 382–395. doi: 10.1016/j.lithos.2017.11.020.
[33] Irvine, T. N.; Baragar, W. R A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences 1971, 8, 523–548. doi: 10.1139/e71-055.
[34] Sun, S. S.; McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society Special Publication 1989, 42, 313–345. doi: 10.1144/GSL.SP.1989.042.01.19.
[35] Frey, F. A.; Green, D. H.; Roy, S. D. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology 1978, 19, 463–513. doi: 10.1093/petrology/19.3.463.
[36] Wilkinson, J. F.; Maitre, R. W. Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100 Mg/(Mg+Fe ratios of common basalts and andesites: Implications for modal mantle metasomatism and undepleted mantle compositions. Journal of Petrology 1987, 28, 37–73. doi: 10.1093/petrology/28.1.37.
[37] Foley, S. F.; Prelevic, D.; Rehfeldt, T.; Jacob, D. E. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth and Planetary Science Letters 2013, 363, 181–191. doi: 10.1016/j.epsl.2012.11.025.
[38] Thompson, R. N.; Gibson, S. a.; Bay, B. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 2000, 407.
[39] Sato, H. Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 1977, 10, 113–120. doi: 10.1016/0024-4937(77) 90037-8.
[40] Sobolev, A. V.; Hofmann, A. W.; Sobolev, S. V.; Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 2005, 434, 590–597. doi: 10.1038/nature03411.
[41] Roeder, P. L.; Emslie, R. F. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology 1970, 29, 275–289. doi: 10.1007/BF00371276.
[42] Rudnick, R.; Gao, S. Composition of the continental crust. The crust 2003, 3, 1–64.
[43] Salters, V. J.; Stracke, A. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 2004, 5. doi: 10.1029/2003GC000597.
[44] Yan, Q.; Shi, X.; Metcalfe, I.; Liu, S.; Xu, T.; Kornkanitnan, N.; Sirichaiseth, T.; Yuan, L.; Zhang, Y.; Zhang, H. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Scientific Reports 2018, 8, 1–14. doi: 10.1038/s41598-018-20712-7.
[45] Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 1988, 90, 297–314. doi: 10.1016/0012-821X(88)90132-X.
[46] Niu, Y.; O’Hara, M. J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research: Solid Earth 2003, 108. doi: 10.1029/2002jb002048.
[47] Zou, H.; Reid, M. R.; Liu, Y.; Yao, Y.; Xu, X.; Fan, Q. Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chemical Geology 2003, 200, 189–201. doi: 10.1016/S0009-2541(03)00188-8.
[48] Niu, Y.; Collerson, K. D.; Batiza, R.; Wendt, J. I.; Regelous, M. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11◦20’N. Journal of Geophysical Research: Solid Earth 1999, 104, 7067–7087. doi: 10.1029/1998JB900037.
[49] Klein, E. M.; Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research 1987, 92, 8089. doi: 10.1029/JB092iB08p08089.
[50] Schilling, J. g.; Kingsley, R. H.; Hanan, B. B.; McCully, B. L. Nd-Sr-Pb isotopic variations along the Gulf of Aden: Evidence for Afar Mantle Plume-Continental Lithosphere Interaction. Journal of Geophysical Research 1992, 97, 10927. doi: 10.1029/92JB00415.
[51] Putirka, K. D. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems 2005, 6, 1–14. doi: 10.1029/2005GC000915.
[52] Herzberg, C.; Asimow, P. D. PRIMELT3 MEGA. XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus. Geochemistry, Geophysics, Geosystems 2015, 16, 563–578. doi: 10.1002/2014GC005631.
[53] Putirka, K. D.; Perfit, M.; Ryerson, F. J.; Jackson, M. G. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology 2007, 241, 177–206. doi: 10.1016/j.chemgeo.2007.01.014.
[54] Albarede, F. How deep do common basaltic magmas form and differentiate? Journal of Geophysical Research, 1992, 97. doi: 10.1029/91jb02927.
[55] Haase, K. M. The relationship between the age of the lithosphere and the composition of oceanic magmas: Constraints on partial melting, mantle sources and the thermal structure of the plates. Earth and Planetary Science Letters 1996, 144, 75–92. doi: 10.1016/0012-821x(96)00145-8.
[56] Campbell, I. H. Testing the plume theory. Chemical Geology, 2007, 241, 153–176. doi: 10.1016/j.chemgeo.2007.01.024.
[57] Hole, M. J.; Millett, J. M. Controls of Mantle Potential Temperature and Lithospheric Thickness on Magmatism in the North Atlantic Igneous Province. Journal of Petrology 2016, 57, 417–436. doi: 10.1093/petrology/egw014.
[58] Tapponnier, P.; Peltzer, G.; Armijo, R. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications 1986, 19, 113–157. doi: 10.1144/GSL.SP.1986.019.01.07.
[59] Flower, M.; Tamaki, K.; Hoang, N. Mantle extrusion: A model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the western Pacific. Mantle Dynamics and Plate Interactions in East Asia 1998, 27, 67–88. doi: 10.1029/GD027p0067.
[60] Zhang, Y.; Yu, K.; Qian, H. LA-ICP-MS analysis of clinopyroxenes in basaltic pyroclastic rocks from the xisha islands, Northwestern South China sea. Minerals 2018, 8, 7–15. doi: 10.3390/min8120575.
[61] Zhang, W. Characteristic of continental rift volcanic activities in Sanshui Basin and early evolution of South China SEA. PhD thesis, China University of Geosciences (Beijing), 2013.
[62] Xiao, L.; Zhou, H.; Dong, Y.; Zeng, G.; Wang, F. Geochemistry and petrogenesis of Cenozoic volcanic rocks from Sanshui Basin: Implications for spatial and temporal variation of rock types and on the formation of South China Sea constraintsS. Geotectonica et Metallogenia 2006, 30, 72–81.
[63] Dong, Y.; Xiao, L.; Zhou, H.; Zeng, G.; Wang, F.; Wang, X.; Xiang, H.; Zhao, T.; Liu, X. Spatial distribution and etrological characteristics of the bimodal volcanic rocks from Sanshui basin, Guangdong province: Implication for basin dynamics. Geotectonica et Metallogenia 2006, 30, 82–92.
[64] Tapponnier, P.; Peltzer, G.; Le Dain, A. Y.; Armijo, R.; Cobbold, P. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 1982, 10, 611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0. CO; 2.
[65] Yao, B.; Wan, L. Variation of the lithospheric thickness in the South China Sea and its tectonic signification. Geology in China 2010, 37.
[66] Ren, J. Y.; Lei, C.; Wang, S.; Li, T.; Zhang, X. L. Tectonic Stratigraphic Framework of the Yinggehai-Qiongdongnan Basins and Its Implication for Tectonics Province Division in South China Sea. Chinese Journal of Geophysics 2013, 54, 1124–1137. doi: 10.1002/cjg2.1689.
Cite This Article
  • APA Style

    Xiaobo Yuan, Wang Ding. (2020). Geochemistry and Mantle Potential Temperature of Late Cenozoic Basaltic Rocks from the Northern and Western Continental Margins of the South China Sea. Earth Sciences, 9(5), 178-191. https://doi.org/10.11648/j.earth.20200905.14

    Copy | Download

    ACS Style

    Xiaobo Yuan; Wang Ding. Geochemistry and Mantle Potential Temperature of Late Cenozoic Basaltic Rocks from the Northern and Western Continental Margins of the South China Sea. Earth Sci. 2020, 9(5), 178-191. doi: 10.11648/j.earth.20200905.14

    Copy | Download

    AMA Style

    Xiaobo Yuan, Wang Ding. Geochemistry and Mantle Potential Temperature of Late Cenozoic Basaltic Rocks from the Northern and Western Continental Margins of the South China Sea. Earth Sci. 2020;9(5):178-191. doi: 10.11648/j.earth.20200905.14

    Copy | Download

  • @article{10.11648/j.earth.20200905.14,
      author = {Xiaobo Yuan and Wang Ding},
      title = {Geochemistry and Mantle Potential Temperature of Late Cenozoic Basaltic Rocks from the Northern and Western Continental Margins of the South China Sea},
      journal = {Earth Sciences},
      volume = {9},
      number = {5},
      pages = {178-191},
      doi = {10.11648/j.earth.20200905.14},
      url = {https://doi.org/10.11648/j.earth.20200905.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.earth.20200905.14},
      abstract = {Deep dynamic processes of the evolution of the South China Sea (SCS) are recorded by the large-scale magmatism in the SCS and its surrounding regions. The geochemical analysis of whole-rock and olivine phenocryst was conducted on the Late Cenozoic basaltic rocks, which are exposed in the continental margins of the northern (the Leiqiong Area) and western (the Kontum Area) SCS. Consistent geochemical characteristics were shown on the basaltic rocks based on the results, which are similar to OIB from intra-plate environment. Mantle potential temperature (Tp ) was measured by MgO of parental magma compositions and by olivine-liquid equilibria thermometry, with an average of 1489°C beneath the Leizhou Peninsula, 1555°C beneath the Northern Hainan and 1458°C beneath the Kontum Area. Compared with Tp  of SCS MORB, the mantle excess temperature is about 78–175°C in the studied areas. The highest excess temperature within typical plume-affected regions. Our results provide the evidence based on temperature for the existence of the Hainan Plume. The data of highest Tp  under the North Hainan may indicate the upper reaches of mantle plume. The mantle source of post-spreading magmatism in SCS and its surrounding region is likely to be correlated to that of pre-spreading volcanic activities in the northern continental margins.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Geochemistry and Mantle Potential Temperature of Late Cenozoic Basaltic Rocks from the Northern and Western Continental Margins of the South China Sea
    AU  - Xiaobo Yuan
    AU  - Wang Ding
    Y1  - 2020/09/21
    PY  - 2020
    N1  - https://doi.org/10.11648/j.earth.20200905.14
    DO  - 10.11648/j.earth.20200905.14
    T2  - Earth Sciences
    JF  - Earth Sciences
    JO  - Earth Sciences
    SP  - 178
    EP  - 191
    PB  - Science Publishing Group
    SN  - 2328-5982
    UR  - https://doi.org/10.11648/j.earth.20200905.14
    AB  - Deep dynamic processes of the evolution of the South China Sea (SCS) are recorded by the large-scale magmatism in the SCS and its surrounding regions. The geochemical analysis of whole-rock and olivine phenocryst was conducted on the Late Cenozoic basaltic rocks, which are exposed in the continental margins of the northern (the Leiqiong Area) and western (the Kontum Area) SCS. Consistent geochemical characteristics were shown on the basaltic rocks based on the results, which are similar to OIB from intra-plate environment. Mantle potential temperature (Tp ) was measured by MgO of parental magma compositions and by olivine-liquid equilibria thermometry, with an average of 1489°C beneath the Leizhou Peninsula, 1555°C beneath the Northern Hainan and 1458°C beneath the Kontum Area. Compared with Tp  of SCS MORB, the mantle excess temperature is about 78–175°C in the studied areas. The highest excess temperature within typical plume-affected regions. Our results provide the evidence based on temperature for the existence of the Hainan Plume. The data of highest Tp  under the North Hainan may indicate the upper reaches of mantle plume. The mantle source of post-spreading magmatism in SCS and its surrounding region is likely to be correlated to that of pre-spreading volcanic activities in the northern continental margins.
    VL  - 9
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Institute of Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, China

  • Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan

  • Sections