A supercritical carbon dioxide (SCC) assisted process was developed to synthesize protein supported poly (2-dimethylaminoethyl methacrylate)/ferrite nanocomposites (PNCs). The process involve 2,2-azobisisobutyronitrile initiated insitu polymerization of 2-dimethylaminoethyl methacrylate in presence of ferrite nanoparticles and bisacrylamide at 90±1 oC, 1200 psi over 6 hr in SCC. This was followed by subsequent loading of bovine serum albumin (BSA) as a model protein over PNCs in phosphate buffer (PBS, pH 7.4) at 1200 psi, 35±1⁰C over additional 2 hr in SCC. The formation of PNCs was ascertained through Ultra violet-visible, Fourier transform-infrared, X-ray diffraction spectra, transmission electron, atomic force microscopy and magnetometry. The developed process extends large scale production of nanomagnetic PNCs suitable as carrier for protein release applications with optimal release properties. The release of protein from PNCs under in vitro in PBS down to nanomolar range with high temporal resolution, speed and reproducibility was quantified through square wave voltammetry.
Published in | International Journal of Biomedical Materials Research (Volume 2, Issue 1) |
DOI | 10.11648/j.ijbmr.20140201.11 |
Page(s) | 1-6 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Supercritical Synthesis, Nanocomposites, Protein Release, Square Wave Voltammetry
[1] | Brunner, G . Ann Rev Chem. Biomol. Engg.2010, 1, 321. |
[2] | Ohde, H, Wai, C.M, Rodriguez, J.M, Coll. Polym. Sci. 2007, 285, 475. |
[3] | Cao, L , Chen, L , Jiao, J , Zhang, S , Gao, W. Coll. Polym. Sci.2007, 285,1229. |
[4] | Pathak, P , Meziani, M.J , Sun, Y.P . Exp. Op. Drug Del. 2,747. |
[5] | Watson, M.S , Whitaker, M. J , Howdle, S.M , Shakesheff, K.M .Adv. Mat.2002,14, 1802. |
[6] | Hile, D.D , Pishko, M.V. J. Del. Targ. Therap. Agents.2004,11, 287. |
[7] | Caliceti, P , Salmaso, S , Elvassore, N , Bertucco, A. J.Control Re-lease.2004,94, 195. |
[8] | Ginty, P.J, Barry, J.J.A , White, L.J , Howdle, S.M, Shakesheff, K.M. Eur J. Phar. Biopharmaceutics,2008, 68, 82. |
[9] | Kang, Y, Yang, Y, Ouyang, C, Yin, P, Huang, G, Yao, Z, Liao, Y. Carbo-hydrate Polym.2009, 7, 244. |
[10] | Kluge, J, Fusaro, F, Casas, N, Mazzotti, M, Muhrer, G. J. Supercrit. Flu-ids.2009,50, 327. |
[11] | Wang, C, Wang, J, Gao, W, Jiao, J, Feng H, Liu, X, Chen, L. J. Coll. Interf. Sci.2010, 343, 141. |
[12] | Yang, Y, Tang, G, Zhang, H, Zhao, Y, Yuan, X, Fan, Y, Wang, M. Mat. Sci. Engg.2011, C31, 350. |
[13] | Wang, J. .Acc. Chem. Res. 2002, 35,811. |
[14] | Schwarz, A, Bagel, O, Girault ,H.H. Electroana-lysis.2000, 12,811. |
[15] | Mora, L, Torres, K.Y.C, Clawson, C, Hernandez, L, Zhang, L, Wang, J. J. Control Release, 2009, 140,69. |
[16] | Kato, M, Kato, H, Eyama, S, Takatsu, A.J. Chromatogr. B: Analytical Technologies in the Biomedical and Life Sciences. 2009, 877,3059 (2009) |
[17] | Carpenter, J.F, Randolph T.W, Jiskoot F, Crommelin, W.D.J, Middaugh, C.R, Winter G. Pharm. Sci.2010, 99,2200. |
[18] | Horak J, Ronache,r A, Lindner, W. J, Chromatogr . 1217, 2010, 5092. |
[19] | Carlsson, N, Borde, A, Wölfel, S, Åkerman, B, Larsson, A. Anal. Biochem.2011, 411, 116. |
[20] | Pan, S, Aebersold, R, Chen, R, Rush, J, Goodlett, D.R, McIntosh, M.W, Zhang, J, Brentnall, T.A. J. Proteome Res. 2009, 8,787. |
[21] | Ye, H, Hill, J, Kauffmanm, J, Han, X. Anal. Biochem.2010, 400, 46. |
[22] | Tan J.P.K, Tam K.C. J. Control Release. 2007, 118, 87. |
[23] | Thatiparti, T.R, Muram, S.T, Nivasu, V.J. Biomed. Mat. Res. B: Appl. Biomat. 92B, 111. |
[24] | Yiu, H.H.P, Niu, H.J, Biermans, E, Tendeloo, G.V, Rosseinsky, M.J. Adv. Funct. Mat. 2010, 20, 1599. |
[25] | Phanapavudhikul, P, Shen, S, Ng, W.K, Tan, R.B. Drug Deliv. 2008, 15,177. |
[26] | Hoare, T, Antamari, J.S, Goya, G.F, Irusta, S, Lin, D, Lau, S, Padera, R, Langer, R, Kohane, D.S. Nano Lett.2009, 9,3651. |
[27] | Ke, F, Yuan, Y.P, Qiu, L.G;. Shen, Y.H, Xie, A.J, Zhu, J.F, Tian, X.Y, Zhang, L.D. J. Mater. Chem. 2,3843. |
[28] | Li, W, Gao, C, Qian, H, Ren, J, Yan, D.J Mater Chem. 2006, 16, 1852. |
[29] | Dong, H, Huang, J, Koepsel, R. R, Ye, P, Russell, A. J, Matyjaszewski, K. Biomacromolecules. 12, 1305. |
[30] | Zhou, L, Yuan, J, Yuan, W, Sui, X, Wu, S, Li, Z, Shen, D.J. J. Magn. Magn. Mater.2011, 2011, 321,2799. |
[31] | Zhou, L, Cai, Z, Yuan, J, Kang, Y, Yuan, W, Zhong, D. Polym Int.2011, 60, 1303. |
[32] | Nguyen, H, Haldorai, Y, Pham, Q. L, Shim, J. J. Mat. Sci. Engg. B.2011, 173, 773. |
[33] | Sun , Y, Chen , Z. L, Yang, X. X, Huang , P, Zhou, X. P, Du, X. X. Nanotechnology. 2009, 20, 135102. |
[34] | Chomoucka, J, Drbohlavova, J, Huska, D, Adam, V, Kizek R, Hubalek, J. Pharm. Res. 2010, 62, 144. |
[35] | Purushotham, S, Ramanujan, R.V. Acta Biomaterialia.2010, 6, 502. |
[36] | McGill, S. L, Cuylear, C. L, Adolphi, N. L, Osi´nski, M, Smyth, H. D. C., IEEE Transsaction on Nanobiosci. 2009, 8, 33. |
[37] | Agarwal, T, Gupta, K, Zaidi, M. G. H, Alam, S. Nanoscience and Nanotechnology, 2012, 2, 5. |
[38] | Jin, L, Deng, Y, Hu, J, Wang, C. J. Polym. Sci. A: Polym. Chem. 42,2011, 6081. |
[39] | Dai, F, Sun, P, Liu, Y, Liu, W. Biomaterials.2010, 31,559. |
[40] | Zhang, X. Ai , C, Ma, J, Xu J, Yang, S. J. Colloid Interf. Sci.2001, 356, 24. |
[41] | Chen, L, Xie, J, Aatre, K.R, Varadan, V.K. J. Nanotech. Engg. Med. 2010, 1(1), 8 pp. |
[42] | Gou, M. L, Qian, Z.Y, Wang, H, Tang, Y.B, Huang, M.J, Kan, B, Wen, Y.J, Dai, M, Li, X.Y, Gong, C.Y, Tu, M.J. J Mater Sci, Mater Med.2008, 19,1033. |
[43] | Jia, Y, Gray, G.M, Hay, J.N, Li, Y, Unali, G.F, Baines, F.L, Armes, S.P Mater. Chem.2005, 15, 2202. |
[44] | Xie, M, Kong, Y, Han, H, Shi, J, Ding, L, Song, C, Zhang, Y. React. Funct. Polym.2008, 68, 1601. |
[45] | Pimpha, N , Chaleawlert, S , Chruewkamlow N , Kasinrerk W , Talenta 2011, 84,89. |
APA Style
Gunjan Bisht, M. G. H. Zaidi. (2014). Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release. International Journal of Biomedical Materials Research, 2(1), 1-6. https://doi.org/10.11648/j.ijbmr.20140201.11
ACS Style
Gunjan Bisht; M. G. H. Zaidi. Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release. Int. J. Biomed. Mater. Res. 2014, 2(1), 1-6. doi: 10.11648/j.ijbmr.20140201.11
AMA Style
Gunjan Bisht, M. G. H. Zaidi. Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release. Int J Biomed Mater Res. 2014;2(1):1-6. doi: 10.11648/j.ijbmr.20140201.11
@article{10.11648/j.ijbmr.20140201.11, author = {Gunjan Bisht and M. G. H. Zaidi}, title = {Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release}, journal = {International Journal of Biomedical Materials Research}, volume = {2}, number = {1}, pages = {1-6}, doi = {10.11648/j.ijbmr.20140201.11}, url = {https://doi.org/10.11648/j.ijbmr.20140201.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijbmr.20140201.11}, abstract = {A supercritical carbon dioxide (SCC) assisted process was developed to synthesize protein supported poly (2-dimethylaminoethyl methacrylate)/ferrite nanocomposites (PNCs). The process involve 2,2-azobisisobutyronitrile initiated insitu polymerization of 2-dimethylaminoethyl methacrylate in presence of ferrite nanoparticles and bisacrylamide at 90±1 oC, 1200 psi over 6 hr in SCC. This was followed by subsequent loading of bovine serum albumin (BSA) as a model protein over PNCs in phosphate buffer (PBS, pH 7.4) at 1200 psi, 35±1⁰C over additional 2 hr in SCC. The formation of PNCs was ascertained through Ultra violet-visible, Fourier transform-infrared, X-ray diffraction spectra, transmission electron, atomic force microscopy and magnetometry. The developed process extends large scale production of nanomagnetic PNCs suitable as carrier for protein release applications with optimal release properties. The release of protein from PNCs under in vitro in PBS down to nanomolar range with high temporal resolution, speed and reproducibility was quantified through square wave voltammetry.}, year = {2014} }
TY - JOUR T1 - Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release AU - Gunjan Bisht AU - M. G. H. Zaidi Y1 - 2014/06/20 PY - 2014 N1 - https://doi.org/10.11648/j.ijbmr.20140201.11 DO - 10.11648/j.ijbmr.20140201.11 T2 - International Journal of Biomedical Materials Research JF - International Journal of Biomedical Materials Research JO - International Journal of Biomedical Materials Research SP - 1 EP - 6 PB - Science Publishing Group SN - 2330-7579 UR - https://doi.org/10.11648/j.ijbmr.20140201.11 AB - A supercritical carbon dioxide (SCC) assisted process was developed to synthesize protein supported poly (2-dimethylaminoethyl methacrylate)/ferrite nanocomposites (PNCs). The process involve 2,2-azobisisobutyronitrile initiated insitu polymerization of 2-dimethylaminoethyl methacrylate in presence of ferrite nanoparticles and bisacrylamide at 90±1 oC, 1200 psi over 6 hr in SCC. This was followed by subsequent loading of bovine serum albumin (BSA) as a model protein over PNCs in phosphate buffer (PBS, pH 7.4) at 1200 psi, 35±1⁰C over additional 2 hr in SCC. The formation of PNCs was ascertained through Ultra violet-visible, Fourier transform-infrared, X-ray diffraction spectra, transmission electron, atomic force microscopy and magnetometry. The developed process extends large scale production of nanomagnetic PNCs suitable as carrier for protein release applications with optimal release properties. The release of protein from PNCs under in vitro in PBS down to nanomolar range with high temporal resolution, speed and reproducibility was quantified through square wave voltammetry. VL - 2 IS - 1 ER -