The Bolivian Altiplano has an ongoing history of heavy metal pollution due to years of uncontrolled mining in this region. Heavy metals are a threat to natural environments such as lakes and soils with cultural and economic importance for the local communities. The extreme environmental conditions of the Bolivian Altiplano translate into alkaline soils with high concentration of minerals, high radiation and considerable daily temperature oscillations. Halophilic and halotolerant microorganisms isolated from such environments have interesting biotechnological applications including bioremediation of metal polluted waters and soils. Here, bacterial strains from the Bolivian Altiplano were characterized and biosorption capacity evaluated for three heavy metals (Pb+2, Cd+2 and Zn+2) in variable concentrations. Four strains were able to grow in multimetal medium with a final concentration of 100 mg. L-1, with a higher tolerance to Pb+2. The four isolates were selected for further characterization and were identified as different species of Halomonas genus. The best heavy metal biosorption rates for the four isolates were found at pH 7 and 37°C. Additionally, the fastest uptake rate for all three metals was under 120 minutes in the four chosen isolates. The biosorption process was best described by Langmuir isotherm for all isolates exposed to the three metals separately. The four Halomonas isolates showed a bioremediation potential for heavy metal polluted substrates, although the highest biosorption capacity values were from isolate Ss_is3 notably for Pb+2. This study provides new information about the potential biotechnological capacities of Halomonas strains isolated from mineral soils in the Andes.
Published in | International Journal of Ecotoxicology and Ecobiology (Volume 8, Issue 2) |
DOI | 10.11648/j.ijee.20230802.11 |
Page(s) | 13-23 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2023. Published by Science Publishing Group |
Bioremediation, Biosorption Capacity, Halophile, Heavy Metals, Isolates
[1] | Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals: An overview. J. Environ. Biol., 26, 301–313. |
[2] | Gutiérrez, R. (2009). Estados de investigación temática PIEB: Contaminación minera en Oruro y Potosí. Fundación PIB, 5–17. |
[3] | Miller, J. R., Hudson-Edwards, K. A., Lechler, P. J., Preston, D., & Macklin, M. G. (2004). Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia. Sci. Total Environ., 320 (2–3), 189–209. https://doi.org/10.1016/j.scitotenv.2003.08.011 |
[4] | Selander, L., & Svan, P. (2007). Occurrence and distribution of heavy metals in lake Poopó, Bolivia. In Master of Science Thesis. Lund Unviersity. |
[5] | Gupta, A., & Joia, J. (2016). Microbes as Potential Tool for Remediation of Heavy Metals: A Review. J. Microb. Biochem. Technol., 8 (4), 364–372. https://doi.org/10.4172/1948-5948.1000310 |
[6] | Holan, Z. R., & Volesky, B. (1995). Biosorption of Heavy Metals: Review. Biotechnol. Prog., 11, 235–250. |
[7] | Amoozegar, M. A., Hamedi, J., Dadashipour, M., & Shariatpanahi, S. (2005). Effect of salinity on the tolerance to toxic metals and oxyanions in native moderately halophilic spore-forming bacilli. In World Journal of Microbiology and Biotechnology (Vol. 21, Issues 6–7, pp. 1237–1243). https://doi.org/10.1007/s11274-005-1804-0 |
[8] | Navarro, G., & Maldonado, M. (2002). Geografia ecológica de Bolivia: Vegetación y Ambientes Acuáticos (5ta edició). Editorial: Centro de Ecoloogía y Difusión Simón I. Patiño. |
[9] | Quillaguamán, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M. T., & Delgado, O. (2004). Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int. J. Syst. Evol. Microbiol., 54 (3), 721–725. https://doi.org/10.1099/ijs.0.02800-0 |
[10] | Ledezma, R., & Orsag, V. (2002). Limitantes y manejo de los suelos salinos y/o sódicos en el altiplano boliviano. Instituto de Investigación para el Desarrollo. |
[11] | Andrews, J. (2001). Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother., 48 (1), 5–16. |
[12] | Schmidt, T., & Schlegel, H. G. (1994). Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J. Bacteriol., 176 (22), 7045–7054. https://doi.org/10.1128/jb.176.22.7045-7054.1994 |
[13] | Krishna, M. P., Varghese, R., Babu, A. V., & Mohamed Hatha, A. A. (2012). Bioaccumulation of Cadmium by Pseudomonas Sp. Isolated From Metal Polluted Industrial Region. Environ. Res. Eng. Manag., 3 (61), 58–64. https://doi.org/10.5755/j01.erem.61.3.1268 |
[14] | Joshi, B. H., & Modi, K. G. (2013). Screening and Characterization of Heavy Metal Resistant Bacteria for Its Prospects in Bioremediation of Contaminated Soil. J. Environ. Res. Dev., 7 (4), 1531–1538. |
[15] | Volesky, B., & May-Phillips, H. A. (1995). Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 42 (5), 797–806. https://doi.org/10.1007/s002530050333 |
[16] | Simonin, J. P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J., 300, 254–263. https://doi.org/10.1016/j.cej.2016.04.079 |
[17] | Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem., 34, 451–465. https://doi.org/10.1021/acs.oprd.7b00090 |
[18] | Ho, Y. S., & McKay, G. (2000). Correlative biosorption equilibria model for a binary batch system. Chem. Eng. Sci., 55 (4), 817–825. https://doi.org/10.1016/S0009-2509(99)00372-3 |
[19] | Ho, Y. (2014). Isotherms for the Sorption of Lead onto Peat : Comparison of Linear and Non-Linear Methods. Pol. J. Environ. Stud. ol. 15, No. 1 (2006), 81-86. |
[20] | Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., & Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res., 120 (May), 88–116. https://doi.org/10.1016/j.watres.2017.04.014 |
[21] | Ali, I., Akbar, A., Aslam, M., Ullah, S., Anwar, M., Punnapayak, H., Lotrakul, P., Prasongsuk, S., Yanwisetpakdee, B., Permpornsakul, P., & Rakshit, S. K. (2016). Comparative Study of Physical Factors and Microbial Diversity of Four Man-Made Extreme Ecosystems. Proc. Natl. Acad. Sci. India Sect. B - Biol. Sci., 86 (3), 767–778. https://doi.org/10.1007/s40011-015-0519-8 |
[22] | Liu, H., Tang, L., Zhao, J., Miao, S., Gong, Q., Ma, L., & Zhang, G. (2021). Halomonas humidisoli Sp. Nov., Isolated From Saline–Alkaline Soil. Curr. Microbiol., 78 (2), 803–809. https://doi.org/10.1007/s00284-020-02291-x |
[23] | Qiu, X., Yu, L., Cao, X., Wu, H., Xu, G., & Tang, X. (2021). Halomonas sedimenti sp. nov., a Halotolerant Bacterium Isolated from Deep-Sea Sediment of the Southwest Indian Ocean. Curr. Microbiol., 78 (4), 1662–1669. https://doi.org/10.1007/s00284-021-02425-9 |
[24] | Sánchez-Porro, C., Kaur, B., Mann, H., & Ventosa, A. (2010). Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic. Int. J. Syst. Evol. Microbiol., 60 (12), 2768–2774. https://doi.org/10.1099/ijs.0.020628-0 |
[25] | Holt, J., Krieg, N., Sneath, P., Staley, J., & Williams, S. (1994). Bergey’s Manual of Determinative Bacteriology (8th ed.). Lippincott Williams & Wilkins. |
[26] | Kim, K. K., Lee, J. S., & Stevens, D. A. (2013). Microbiology and epidemiology of Halomonas species. Future Microbiol., 8 (12), 1559–1573. https://doi.org/10.2217/fmb.13.108 |
[27] | Moreno, M. L., Piubeli, F., Bonfá, M. R. L., García, M. T., Durrant, L. R., & Mellado, E. (2012). Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal-contaminated soils from the Atacama Desert and their biotechnological potentials. J. Appl. Microbiol., 113 (3), 550–559. https://doi.org/10.1111/j.1365-2672.2012.05366.x |
[28] | Orellana, R., Macaya, C., Bravo, G., Dorochesi, F., Cumsille, A., Valencia, R., Rojas, C., & Seeger, M. (2018). Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front. Microbiol., 9, 1–25. https://doi.org/10.3389/fmicb.2018.02309 |
[29] | Pérez-Fernández, C. A., Iriarte, M., Rivera-Pérez, J., Tremblay, R. L., & Toranzos, G. A. (2019). Microbiota dispersion in the Uyuni salt flat (Bolivia) as determined by community structure analyses. Int. Microbiol., 22 (3), 325–336. https://doi.org/10.1007/s10123-018-00052-2 |
[30] | Amoozegar, M., Ghazanfari, N., & Didari, M. (2012). Lead and Cadmium Bioremoval by Halomonas sp. an Exopolysaccharide-Producing Halophilic Bacterium. Progress in Biological Sciences 2 (1), 1–11. |
[31] | Manasi, Rajesh, V., & Rajesh, N. (2015). An indigenous Halomonas BVR1 strain immobilized in crosslinked chitosan for adsorption of lead and cadmium. Int. J. Biol. Macromol., 79, 300–308. https://doi.org/10.1016/j.ijbiomac.2015.04.071 |
[32] | Diba, H., Cohan, R. A., Salimian, M., Mirjani, R., Soleimani, M., & Khodabakhsh, F. (2021). Isolation and characterization of halophilic bacteria with the ability of heavy metal bioremediation and nanoparticle synthesis from Khara salt lake in Iran. Arch. Microbiol., 203 (7), 3893–3903. https://doi.org/10.1007/s00203-021-02380-w |
[33] | Liu, X. xin, Hu, X., Cao, Y., Pang, W. jing, Huang, J. yu, Guo, P., & Huang, L. (2019). Biodegradation of Phenanthrene and Heavy Metal Removal by Acid-Tolerant Burkholderia fungorum FM-2. Front. Microbiol., 10, 1–13. https://doi.org/10.3389/fmicb.2019.00408 |
[34] | Sharma, B., & Shukla, P. (2021). Lead bioaccumulation mediated by Bacillus cereus BPS-9 from an industrial waste contaminated site encoding heavy metal resistant genes and their transporters. J. Hazard. Mater., 401, 123285. https://doi.org/10.1016/j.jhazmat.2020.123285 |
[35] | Sowmya, M., Rejula, M. P., Rejith, P. G., Mohan, M., Karuppiah, M., & Hatha, A. A. M. (2014). Heavy metal tolerant halophilic bacteria from vembanad lake as possible source for bioremediation of lead and cadmium. J. Environ. Biol., 35 (4), 655–660. |
[36] | Ventosa, A., Nieto, J. J., & Oren, A. (1998). Biology of Moderately Halophilic Aerobic Bacteria. Microbiol. Mol. Biol. Rev., 62 (2), 504–544. https://doi.org/10.1128/mmbr.62.2.504-544.1998 |
[37] | Manasi, Rajesh, V., Santhana Krishna Kumar, A., & Rajesh, N. (2014). Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chem. Eng. J., 235, 176–185. https://doi.org/10.1016/j.cej.2013.09.016 |
[38] | Ozdemir, G., Ceyhan, N., Ozturk, T., Akirmak, F., & Cosar, T. (2004). Biosorption of chromium (VI), cadmium (II) and copper (II) by Pantoea sp. TEM18. Chem. Eng. J., 102 (3), 249–253. https://doi.org/10.1016/j.cej.2004.01.032 |
[39] | Zouboulis, A. I., Loukidou, M. X., & Matis, K. A. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem., 39 (8), 909–916. https://doi.org/10.1016/S0032-9592(03)00200-0 |
[40] | Mwandira, W., Nakashima, K., Kawasaki, S., Arabelo, A., Banda, K., Nyambe, I., Chirwa, M., Ito, M., Sato, T., Igarashi, T., Nakata, H., Nakayama, S., & Ishizuka, M. (2020). Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Sci. Rep., 10 (1), 1–9. https://doi.org/10.1038/s41598-020-78187-4 |
[41] | Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnol. Prog., 11, 235–250. https://doi.org/10.4018/978-1-5225-8903-7.ch077 |
[42] | Pardo, R., Herguedas, M., Barrado, E., & Vega, M. (2003). Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida. Anal. Bioanal. Chem., 376 (1), 26–32. https://doi.org/10.1007/s00216-003-1843-z |
[43] | Prakash Williams, G. P., Gnanadesigan, M., & Ravikumar, S. (2013). Isolation, identification and metal tolerance of halobacteial strains. Indian J. Mar. Sci., 42 (3), 402–408. |
[44] | Green-Ruiz, C., Rodriguez-Tirado, V., & Gomez-Gil, B. (2008). Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour. Technol., 99 (9), 3864–3870. https://doi.org/10.1016/j.biortech.2007.06.047 |
[45] | Muzammil, S., Siddique, M. H., Mureed, F., Andleeb, R., Jabeen, F., Waseem, M., Zafar, S., Rehman, H. F., Ali, T., & Ashraf, A. (2021). Assessment of cadmium tolerance and biosorptive potential of bacillus cereus GCFSD01 isolated from cadmium contaminated soil. Brazilian J. Biol., 81 (2), 398–405. https://doi.org/10.1590/1519-6984.227200 |
[46] | Ho, Y. S., & McKay, G. (1998). The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng., 76 (4), 822–827. https://doi.org/10.1002/cjce.5450760419 |
[47] | McKay, G., Ho, Y. S., & Ng, J. C. Y. (1999). Biosorption of copper from waste waters: A review. Sep. Purif. Methods, 28 (1), 87–125. https://doi.org/10.1080/03602549909351645 |
[48] | Ho, Y. S. (2006). Review of second-order models for adsorption systems. J. Hazard. Mater., 136 (3), 681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043 |
[49] | Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnol. Adv., 26 (3), 266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002 |
[50] | Ahmady-Asbchin, S., Safari, M., & Tabaraki, R. (2015). Biosorption of Zn (II) by Pseudomonas aeruginosa isolated from a site contaminated with petroleum. Desalin. Water Treat., 54 (12), 3372–3379. https://doi.org/10.1080/19443994.2014.913202 |
[51] | Aksu, Z. (2001). Equilibrium and kinetic modelling of cadmium (II) biosorption by C. 6 ulgaris in a batch system: effect of temperature. Sep. Purif. Technol., 21, 285–294. https://doi.org/10.1016/S1383-5866(00)00212-4 |
[52] | Bueno, B. Y. M., Torem, M. L., Molina, F., & de Mesquita, L. M. S. (2008). Biosorption of lead (II), chromium (III) and copper (II) by R. opacus: Equilibrium and kinetic studies. Miner. Eng., 21 (1), 65–75. https://doi.org/10.1016/j.mineng.2007.08.013 |
[53] | Çolak, F., Atar, N., Yazicioĝlu, D., & Olgun, A. (2011). Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chem. Eng. J., 173 (2), 422–428. https://doi.org/10.1016/j.cej.2011.07.084 |
[54] | Cruz, C. C. V., Da Costa, A. C. A., Henriques, C. A., & Luna, A. S. (2004). Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresour. Technol., 91 (3), 249–257. https://doi.org/10.1016/S0960-8524(03)00194-9 |
[55] | Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., Zhou, H., Tan, Z., & Wang, X. (2008). Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. J. Hazard. Mater., 160 (2–3), 655–661. https://doi.org/10.1016/j.jhazmat.2008.03.038 |
[56] | Li, H., Lin, Y., Guan, W., Chang, J., Xu, L., Guo, J., & Wei, G. (2010). Biosorption of Zn (II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. J. Hazard. Mater., 179 (1–3), 151–159. https://doi.org/10.1016/j.jhazmat.2010.02.072 |
[57] | Morsy, F. M. (2011). Hydrogen production from acid hydrolyzed molasses by the hydrogen overproducing Escherichia coli strain HD701 and subsequent use of the waste bacterial biomass for biosorption of Cd (II) and Zn (II). Int. J. Hydrogen Energy, 36 (22), 14381–14390. https://doi.org/10.1016/j.ijhydene.2011.07.121 |
[58] | Tunali, S., Akar, T., Özcan, A. S., Kiran, I., & Özcan, A. (2006). Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep. Purif. Technol., 47 (3), 105–112. https://doi.org/10.1016/j.seppur.2005.06.009 |
[59] | Kratochvil, D., & Volesky, B. (1998). Advances in the biosorption of heavy metals. Trends Biotechnol, 16 (7), 291–300. https://doi.org/http://dx.doi.org/10.1016/S0167-7799(98)01218-9 |
[60] | Vargas, I., Macaskie, L. E., & Guibal, E. (2004). Biosorption of palladium and platinum by sulfate-reducing bacteria. J. Chem. Technol. Biotechnol., 79 (1), 49–56. https://doi.org/10.1002/jctb.928 |
[61] | Veglio’, F., & Beolchini, F. (1997). Removal of metals by biosorption: A review. Hydrometallurgy, 44 (3), 301–316. https://doi.org/10.1016/s0304-386x(96)00059-x |
[62] | Kumar, M., & Tamilarasan, R. (2017). Kinetics, equilibrium data and modeling studies for the sorption of chromium by Prosopis juliflora bark carbon. Arab. J. Chem., 10, S1567–S1577. https://doi.org/10.1016/j.arabjc.2013.05.025 |
[63] | Fathollahi, A., Khasteganan, N., Coupe, S. J., & Newman, A. P. (2021). A meta-analysis of metal biosorption by suspended bacteria from three phyla. Chemosphere, 268, 129290. https://doi.org/10.1016/j.chemosphere.2020.129290 |
[64] | Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Res., 37 (18), 4311–4330. https://doi.org/10.1016/S0043-1354(03)00293-8 |
[65] | Loaëc, M., Olier, R., & Guezennec, J. (1997). Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Res., 31 (5), 1171–1179. https://doi.org/10.1016/S0043-1354(96)00375-2 |
[66] | Llamas, I., Amjres, H., Mata, J. A., Quesada, E., & Béjar, V. (2012). The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules, 17 (6), 7103–7120. https://doi.org/10.3390/molecules17067103 |
[67] | Mata, J. A., Béjar, V., Llamas, I., Arias, S., Bressollier, P., Tallon, R., Urdaci, M. C., & Quesada, E. (2006). Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res. Microbiol., 157 (9), 827–835. https://doi.org/10.1016/j.resmic.2006.06.004 |
[68] | Mukherjee, P., Mitra, A., & Roy, M. (2019). Halomonas rhizobacteria of avicennia marina of indian sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Front. Microbiol., 10, 1–18. https://doi.org/10.3389/fmicb.2019.01207 |
[69] | Mohapatra, R. K., Parhi, P. K., Pandey, S., Bindhani, B. K., Thatoi, H., & Panda, C. R. (2019). Active and passive biosorption of Pb (II) using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics and isotherm studies. J. Environ. Manage., 247, 121–134. https://doi.org/10.1016/j.jenvman.2019.06.073 |
[70] | Abdel-Razik, M. A., Azmy, A. F., Khairalla, A. S., & AbdelGhani, S. (2020). Metal bioremediation potential of the halophilic bacterium, Halomonas sp. strain WQL9 isolated from Lake Qarun, Egypt. Egypt. J. Aquat. Res., 46 (1), 19–25. https://doi.org/10.1016/j.ejar.2019.11.009 |
APA Style
Andrea Silva Claros, Erick Ferrufino Guardia, Paola Ayala-Borda. (2023). Characterization and Heavy Metal Bioremediation Potential of Halomonas Isolates from the Bolivian Altiplano. International Journal of Ecotoxicology and Ecobiology, 8(2), 13-23. https://doi.org/10.11648/j.ijee.20230802.11
ACS Style
Andrea Silva Claros; Erick Ferrufino Guardia; Paola Ayala-Borda. Characterization and Heavy Metal Bioremediation Potential of Halomonas Isolates from the Bolivian Altiplano. Int. J. Ecotoxicol. Ecobiol. 2023, 8(2), 13-23. doi: 10.11648/j.ijee.20230802.11
AMA Style
Andrea Silva Claros, Erick Ferrufino Guardia, Paola Ayala-Borda. Characterization and Heavy Metal Bioremediation Potential of Halomonas Isolates from the Bolivian Altiplano. Int J Ecotoxicol Ecobiol. 2023;8(2):13-23. doi: 10.11648/j.ijee.20230802.11
@article{10.11648/j.ijee.20230802.11, author = {Andrea Silva Claros and Erick Ferrufino Guardia and Paola Ayala-Borda}, title = {Characterization and Heavy Metal Bioremediation Potential of Halomonas Isolates from the Bolivian Altiplano}, journal = {International Journal of Ecotoxicology and Ecobiology}, volume = {8}, number = {2}, pages = {13-23}, doi = {10.11648/j.ijee.20230802.11}, url = {https://doi.org/10.11648/j.ijee.20230802.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijee.20230802.11}, abstract = {The Bolivian Altiplano has an ongoing history of heavy metal pollution due to years of uncontrolled mining in this region. Heavy metals are a threat to natural environments such as lakes and soils with cultural and economic importance for the local communities. The extreme environmental conditions of the Bolivian Altiplano translate into alkaline soils with high concentration of minerals, high radiation and considerable daily temperature oscillations. Halophilic and halotolerant microorganisms isolated from such environments have interesting biotechnological applications including bioremediation of metal polluted waters and soils. Here, bacterial strains from the Bolivian Altiplano were characterized and biosorption capacity evaluated for three heavy metals (Pb+2, Cd+2 and Zn+2) in variable concentrations. Four strains were able to grow in multimetal medium with a final concentration of 100 mg. L-1, with a higher tolerance to Pb+2. The four isolates were selected for further characterization and were identified as different species of Halomonas genus. The best heavy metal biosorption rates for the four isolates were found at pH 7 and 37°C. Additionally, the fastest uptake rate for all three metals was under 120 minutes in the four chosen isolates. The biosorption process was best described by Langmuir isotherm for all isolates exposed to the three metals separately. The four Halomonas isolates showed a bioremediation potential for heavy metal polluted substrates, although the highest biosorption capacity values were from isolate Ss_is3 notably for Pb+2. This study provides new information about the potential biotechnological capacities of Halomonas strains isolated from mineral soils in the Andes.}, year = {2023} }
TY - JOUR T1 - Characterization and Heavy Metal Bioremediation Potential of Halomonas Isolates from the Bolivian Altiplano AU - Andrea Silva Claros AU - Erick Ferrufino Guardia AU - Paola Ayala-Borda Y1 - 2023/06/21 PY - 2023 N1 - https://doi.org/10.11648/j.ijee.20230802.11 DO - 10.11648/j.ijee.20230802.11 T2 - International Journal of Ecotoxicology and Ecobiology JF - International Journal of Ecotoxicology and Ecobiology JO - International Journal of Ecotoxicology and Ecobiology SP - 13 EP - 23 PB - Science Publishing Group SN - 2575-1735 UR - https://doi.org/10.11648/j.ijee.20230802.11 AB - The Bolivian Altiplano has an ongoing history of heavy metal pollution due to years of uncontrolled mining in this region. Heavy metals are a threat to natural environments such as lakes and soils with cultural and economic importance for the local communities. The extreme environmental conditions of the Bolivian Altiplano translate into alkaline soils with high concentration of minerals, high radiation and considerable daily temperature oscillations. Halophilic and halotolerant microorganisms isolated from such environments have interesting biotechnological applications including bioremediation of metal polluted waters and soils. Here, bacterial strains from the Bolivian Altiplano were characterized and biosorption capacity evaluated for three heavy metals (Pb+2, Cd+2 and Zn+2) in variable concentrations. Four strains were able to grow in multimetal medium with a final concentration of 100 mg. L-1, with a higher tolerance to Pb+2. The four isolates were selected for further characterization and were identified as different species of Halomonas genus. The best heavy metal biosorption rates for the four isolates were found at pH 7 and 37°C. Additionally, the fastest uptake rate for all three metals was under 120 minutes in the four chosen isolates. The biosorption process was best described by Langmuir isotherm for all isolates exposed to the three metals separately. The four Halomonas isolates showed a bioremediation potential for heavy metal polluted substrates, although the highest biosorption capacity values were from isolate Ss_is3 notably for Pb+2. This study provides new information about the potential biotechnological capacities of Halomonas strains isolated from mineral soils in the Andes. VL - 8 IS - 2 ER -