In order to protect public health and safety from the inadvertent release of radioactive materials, during a reactor accident the defense-in-depth strategy must include; multiple layers of protection, such as prevention of accidents, mitigation features and emergency preparedness program that include measures such as sheltering and evacuation. In the present work RASCAL computer code is going to be used to estimate the offsite consequences of a nuclear sever accident using release pathway reduction mechanisms in order to obtain an appropriate release at a Pressurized Water Reactor (PWR) operating at its full power. The existing plant (systems, equipment) assuming that will be used for accident mitigation. Calculation of the total effective dose associated with this reduction is proposed. The data obtained showed that the spray system is the most effective mechanism to mitigate dose release during the accident.
Published in | International Journal of Science and Qualitative Analysis (Volume 2, Issue 2) |
DOI | 10.11648/j.ijsqa.20160202.12 |
Page(s) | 19-23 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Sever Accident, Nuclear Emergency, Total Effective Dose, RASCAL Code
[1] | IAEA-TECDOC-1594 "Analysis of Severe Accidents in Pressurized Heavy Water Reactors" June 2008. |
[2] | NRC Commission’s staff requirements memorandum (SRM) for SECY-11-0137, “Prioritization of Recommended Actions to Be Taken in Response to Fukushima Lessons Learned,” dated December 15, 2011. |
[3] | A. K. Ghosh, V. V. Raj, and A. Kakodkara “A Scheme for Passive! Solation of the Containment of a Reactor” By NUCLEAR SAFETY, Vol. 34, No. 1, January-March 1993 |
[4] | U.S. Nuclear Regulatory Commission "RASCAL 4: Description of Models and Methods" December 2012 |
[5] | IAEA Safety Standards "Preparedness and Response for a Nuclear or Radiological Emergency" General Safety Requirements No. GSR Part 7, VIENNA, 2015 |
[6] | USNRC Technical Training Center "Pressurized Water Reactor Systems" Reactor Concepts Manual, 2004 |
[7] | U.S. Nuclear Regulatory Commission “Modeling potential reactor accident consequences” NUREG/BR-0359 January 2012. |
[8] | IAEA “ACCIDENT ANALYSIS FOR NUCLEAR POWER PLANTS WITH PRESSURIZED WATER REACTORS” SAFETY REPORTS SERIES No. 30, VIENNA, 2003. |
[9] | International Nuclear Safety Advisory Group (INSAG) INSAG-12 "Basic Safety Principles for Nuclear Power Plants 75-INSAG-3 Rev. 1" IAEA October 1999. |
[10] | Nuclear Energy Authority (NEA) "THE FUKUSHIMA DAIICHI NUCLEAR POWER PLANT ACCIDENT", NEA No. 7161, © OECD 2013. |
APA Style
Elsayeda Farid Salem, Asmaa. Khalill Abdeen, Mohamed Abdelrahman Salama. (2016). Assessment of Off-Site Consequences Due to Severe Nuclear Accident According to Release Pathway Reduction Mechanisms Using Computer Code. International Journal of Science and Qualitative Analysis, 2(2), 19-23. https://doi.org/10.11648/j.ijsqa.20160202.12
ACS Style
Elsayeda Farid Salem; Asmaa. Khalill Abdeen; Mohamed Abdelrahman Salama. Assessment of Off-Site Consequences Due to Severe Nuclear Accident According to Release Pathway Reduction Mechanisms Using Computer Code. Int. J. Sci. Qual. Anal. 2016, 2(2), 19-23. doi: 10.11648/j.ijsqa.20160202.12
AMA Style
Elsayeda Farid Salem, Asmaa. Khalill Abdeen, Mohamed Abdelrahman Salama. Assessment of Off-Site Consequences Due to Severe Nuclear Accident According to Release Pathway Reduction Mechanisms Using Computer Code. Int J Sci Qual Anal. 2016;2(2):19-23. doi: 10.11648/j.ijsqa.20160202.12
@article{10.11648/j.ijsqa.20160202.12, author = {Elsayeda Farid Salem and Asmaa. Khalill Abdeen and Mohamed Abdelrahman Salama}, title = {Assessment of Off-Site Consequences Due to Severe Nuclear Accident According to Release Pathway Reduction Mechanisms Using Computer Code}, journal = {International Journal of Science and Qualitative Analysis}, volume = {2}, number = {2}, pages = {19-23}, doi = {10.11648/j.ijsqa.20160202.12}, url = {https://doi.org/10.11648/j.ijsqa.20160202.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijsqa.20160202.12}, abstract = {In order to protect public health and safety from the inadvertent release of radioactive materials, during a reactor accident the defense-in-depth strategy must include; multiple layers of protection, such as prevention of accidents, mitigation features and emergency preparedness program that include measures such as sheltering and evacuation. In the present work RASCAL computer code is going to be used to estimate the offsite consequences of a nuclear sever accident using release pathway reduction mechanisms in order to obtain an appropriate release at a Pressurized Water Reactor (PWR) operating at its full power. The existing plant (systems, equipment) assuming that will be used for accident mitigation. Calculation of the total effective dose associated with this reduction is proposed. The data obtained showed that the spray system is the most effective mechanism to mitigate dose release during the accident.}, year = {2016} }
TY - JOUR T1 - Assessment of Off-Site Consequences Due to Severe Nuclear Accident According to Release Pathway Reduction Mechanisms Using Computer Code AU - Elsayeda Farid Salem AU - Asmaa. Khalill Abdeen AU - Mohamed Abdelrahman Salama Y1 - 2016/11/08 PY - 2016 N1 - https://doi.org/10.11648/j.ijsqa.20160202.12 DO - 10.11648/j.ijsqa.20160202.12 T2 - International Journal of Science and Qualitative Analysis JF - International Journal of Science and Qualitative Analysis JO - International Journal of Science and Qualitative Analysis SP - 19 EP - 23 PB - Science Publishing Group SN - 2469-8164 UR - https://doi.org/10.11648/j.ijsqa.20160202.12 AB - In order to protect public health and safety from the inadvertent release of radioactive materials, during a reactor accident the defense-in-depth strategy must include; multiple layers of protection, such as prevention of accidents, mitigation features and emergency preparedness program that include measures such as sheltering and evacuation. In the present work RASCAL computer code is going to be used to estimate the offsite consequences of a nuclear sever accident using release pathway reduction mechanisms in order to obtain an appropriate release at a Pressurized Water Reactor (PWR) operating at its full power. The existing plant (systems, equipment) assuming that will be used for accident mitigation. Calculation of the total effective dose associated with this reduction is proposed. The data obtained showed that the spray system is the most effective mechanism to mitigate dose release during the accident. VL - 2 IS - 2 ER -