To find improved F1 hybrids for breeding procedures, the heterosis of maize hybrids must be determined. Therefore, to identify prospective hybrids for use in future provitamin A maize breeding systems, this study was carried out to evaluate the amount of standard heterosis for grain yield and related attributes. Fifteen provitamin A maize inbred lines were crossed through the diallel-II design. The resulting Eight four F1 hybrids along with four standard checks (BHQPY545, BH549, BH546, and BH547) were evaluated using RCBD (20 entries) and Alpha-Lattice Design (68 entries) with two replications during 2022/2023 main cropping season at Bako National Maize Research Center. Analysis of variance revealed significant variations for most of the traits indicating the existence of genetic variability. The Standard heterosis assessment noticed significant positive and negative heterosis for the majority of the traits investigated. Cross combinations over BHQPY 545, such as L10 × L3, L10 × L6, and L13×L12, demonstrated the largest proportion of traditional heterosis for grain yield (more than 25% yield advantage). Because BH546 and BH547 are normal maize with grain production potential, the majority of crossings yielded negative and significant results over commercial checks. The highest found heterosis for grain yield and associated factors indicated that maize genotypes' heterotic potential may be beneficial to boost yield. The findings of this study could be valuable for researchers looking to develop high-yielding provitamin A maize hybrids. As a result, possible hybrids might be recommended for commercial usage once the results have been verified by repeating the research over time and across places, as well as incorporating quality attributes analysis data.
Published in | Innovation (Volume 5, Issue 3) |
DOI | 10.11648/j.innov.20240503.13 |
Page(s) | 95-108 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Biofortification, F1 Hybrids, Single Cross, Standard Heterosis, Desirable Gene
Lines | Code | Pedigree | Source Of Genotype |
---|---|---|---|
1 | L1 | MM1300043-B-1-1-1-B-1-1 | EIAR-BNMRC |
2 | L2 | MM1400001-77-1-2-1-1-B | EIAR-BNMRC |
3 | L3 | MM1300052-B-7-1-1-B-1-1 | EIAR-BNMRC |
4 | L4 | MM1300043-B-13-1-2-B-1-1 | EIAR-BNMRC |
5 | L5 | MM1300079-B-11-1-4-B-1-1 | EIAR-BNMRC |
6 | L6 | MM1400001-93-3-1-1-2-B | EIAR-BNMRC |
7 | L7 | MM1300094-6-1-2-B-1-1 | EIAR-BNMRC |
8 | L8 | MM1201002-B | EIAR-BNMRC |
9 | L9 | MM1801001-B | EIAR-BNMRC |
10 | L10 | MM0001010 | EIAR-BNMRC |
11 | L11 | MM1400001-89-2-1-2-2-B | EIAR-BNMRC |
12 | L12 | MM1100001-173-2-1-2-1-1-1 | EIAR-BNMRC |
13 | L13 | MM1300052-B-7-3-2-B-1-1 | EIAR-BNMRC |
14 | L14 | MM1300043-B-1-1-1-B-1-1 | EIAR-BNMRC |
15 | L15 | MM1300071-B-13-1-3-B-1-1 | EIAR-BNMRC |
Crosses | GY | DA | DS | ASI | PH | EH | EPO | GLS | TLB | PA | EA |
---|---|---|---|---|---|---|---|---|---|---|---|
L1xL2 | 6.23 | 73.6 | 74.4 | 1 | 219.2 | 103.8 | 0.5 | 3.2 | 5.4 | 3.9 | 3.5 |
L1xL3 | 5.6 | 75.5 | 76.2 | 1 | 222.1 | 108.2 | 0.5 | 6.3 | 6.1 | 4.4 | 4.1 |
L1xL4 | 6.27 | 75.7 | 76.8 | 1 | 215.7 | 100.8 | 0.5 | 6.5 | 6.1 | 4.4 | 4.3 |
L1xL5 | 5.06 | 75.3 | 76.1 | 1 | 214.5 | 100.6 | 0.5 | 3.4 | 3.8 | 4.1 | 4.5 |
L1xL6 | 6.68 | 75.8 | 76.8 | 1 | 225.3 | 112.6 | 0.5 | 3.1 | 4.2 | 2.9 | 3.5 |
L1xL7 | 3.45 | 80 | 82 | 2 | 223.5 | 100.8 | 0.4 | 5.9 | 6.8 | 4.5 | 5 |
L1xL8 | 3.75 | 77 | 78 | 1 | 209.5 | 84.3 | 0.4 | 4.4 | 7.5 | 4.8 | 5 |
L1xL9 | 6.66 | 73.5 | 75 | 2 | 196.7 | 116.3 | 0.6 | 3.8 | 4.9 | 3.8 | 3.2 |
L1xL10 | 5.62 | 76 | 76.9 | 1 | 207 | 98.6 | 0.5 | 3.3 | 5.7 | 3.4 | 3.7 |
L1xL11 | 1.95 | 78.8 | 79.9 | 1 | 226.1 | 94.8 | 0.4 | 3.4 | 4.5 | 4.7 | 3.9 |
L1xL12 | 6.16 | 74.2 | 75 | 1 | 217.9 | 109.8 | 0.5 | 4.8 | 6.2 | 4.9 | 4.8 |
L2XL3 | 6.45 | 75 | 76 | 1 | 216.7 | 111.8 | 0.5 | 3.6 | 5.2 | 4.3 | 7.2 |
L2XL4 | 6.73 | 76.7 | 77.7 | 1 | 227.7 | 113.2 | 0.5 | 3.1 | 3.7 | 3.5 | 3.2 |
L2XL5 | 8.47 | 76.5 | 77.4 | 1 | 226.5 | 110.6 | 0.5 | 2.1 | 4 | 3.7 | 4.2 |
L2XL6 | 7.83 | 73.5 | 74.7 | 1 | 217.1 | 111.2 | 0.6 | 6.3 | 7.1 | 4.4 | 4.6 |
L2XL7 | 4.47 | 75.8 | 77.3 | 2 | 220.3 | 109.6 | 0.5 | 2.1 | 4.7 | 4.2 | 4.5 |
L2XL8 | 5.63 | 75.6 | 77.2 | 2 | 212.9 | 108.9 | 0.5 | 4.2 | 4.8 | 3.9 | 3.9 |
L2XL9 | 6.29 | 79 | 80.5 | 2 | 221.7 | 110.8 | 0.5 | 2.6 | 4.4 | 3.6 | 3.7 |
L2XL10 | 7.64 | 77.7 | 79.2 | 1 | 224.2 | 104.2 | 0.5 | 2.1 | 5.2 | 3 | 3.7 |
L2XL11 | 3.27 | 83.8 | 85.3 | 2 | 140.3 | 79.6 | 0.6 | 5.3 | 7.2 | 5.9 | 6 |
L2XL12 | 4.02 | 79.5 | 81.3 | 2 | 185.7 | 81.6 | 0.4 | 3.5 | 5.7 | 6.1 | 7.3 |
L3XL4 | 6.33 | 76.6 | 78.2 | 2 | 226.4 | 105.4 | 0.5 | 4.7 | 6 | 5.1 | 3.9 |
L3XL5 | 6.16 | 77.1 | 78.4 | 1 | 225.7 | 114.3 | 0.5 | 3.2 | 5.9 | 3.9 | 3 |
L3XL6 | 6.71 | 77.3 | 78.9 | 2 | 232.6 | 114.8 | 0.5 | 4.1 | 6.3 | 4 | 4.9 |
L3XL7 | 7.07 | 75.5 | 77.3 | 2 | 236.7 | 116.6 | 0.5 | 3.5 | 5.4 | 3.9 | 4.3 |
L3XL8 | 5.96 | 75.6 | 76.9 | 1 | 237.2 | 108.8 | 0.5 | 5.7 | 7.4 | 4.1 | 4 |
L3XL9 | 7.39 | 75.7 | 76.7 | 1 | 237.7 | 112.2 | 0.5 | 6.4 | 7.5 | 3.7 | 4.2 |
L3XL10 | 7.27 | 77.8 | 80 | 2 | 228.9 | 120.8 | 0.5 | 3.3 | 4.2 | 3.6 | 4.9 |
L3XL11 | 6.17 | 73.5 | 74.6 | 1 | 225.9 | 97.8 | 0.4 | 3.7 | 6.8 | 4.3 | 4.1 |
L3XL12 | 6.77 | 75.5 | 76.3 | 1 | 208.2 | 85.1 | 0.4 | 3 | 5.9 | 4.1 | 4.3 |
L4XL5 | 4.97 | 72.8 | 74.3 | 2 | 218.3 | 100.1 | 0.4 | 5.1 | 6 | 4.4 | 4 |
L4XL6 | 5.97 | 77 | 77.7 | 1 | 218.6 | 101.2 | 0.5 | 5.8 | 6.1 | 4.1 | 4.6 |
L4XL7 | 5.22 | 72 | 73.5 | 2 | 206 | 90.8 | 0.4 | 4.4 | 7.8 | 4.2 | 5.5 |
L4XL8 | 7.01 | 72.8 | 74 | 1 | 223.4 | 104.3 | 0.5 | 5.8 | 7.4 | 4.9 | 5.9 |
L4XL9 | 5.95 | 74.4 | 75.7 | 1 | 196.4 | 95.4 | 0.5 | 4.2 | 6.1 | 4.9 | 4.7 |
L4XL10 | 5.72 | 73.2 | 74.8 | 2 | 215.2 | 96.3 | 0.4 | 6.5 | 7.1 | 5.9 | 6.8 |
L4XL11 | 5.07 | 72 | 73 | 1 | 224.2 | 95.3 | 0.5 | 3.3 | 5.2 | 5.6 | 6.2 |
L4XL12 | 6.32 | 73.8 | 75 | 1 | 230.4 | 105.8 | 0.5 | 5.3 | 5.7 | 5.9 | 5.4 |
L5XL6 | 1.75 | 75.8 | 75.4 | 0 | 211.1 | 87.8 | 0.4 | 4.1 | 4.3 | 4.7 | 5.9 |
L5XL7 | 6.47 | 73.2 | 74 | 1 | 221.4 | 89.8 | 0.4 | 4.3 | 5.9 | 4.2 | 4.8 |
L5XL8 | 7.23 | 74 | 75 | 1 | 217 | 97.8 | 0.4 | 4.4 | 5 | 4 | 5.5 |
L5XL9 | 8.76 | 72.3 | 73.3 | 1 | 228.3 | 102.6 | 0.4 | 3.6 | 5.5 | 3.9 | 4.5 |
L5XL10 | 7.37 | 78.9 | 81.2 | 2 | 236.4 | 113.9 | 0.5 | 3.5 | 4.6 | 4.4 | 4.2 |
L5XL11 | 7.79 | 71.8 | 73 | 1 | 231.9 | 113.3 | 0.5 | 5.3 | 6.2 | 3.6 | 5.4 |
L5XL12 | 5.81 | 71.4 | 73.2 | 2 | 218.9 | 90.4 | 0.4 | 6 | 6.3 | 4.7 | 6.2 |
L6xL7 | 5.89 | 73.7 | 74.7 | 1 | 197.7 | 84.2 | 0.4 | 4.9 | 5.7 | 4.7 | 4.7 |
L6xL8 | 6.39 | 73.5 | 74.6 | 1 | 206.4 | 93.8 | 0.4 | 3.7 | 5.6 | 4 | 4.1 |
L6xL9 | 6.16 | 77 | 78.2 | 1 | 204.6 | 89.7 | 0.5 | 3.8 | 5.9 | 4.1 | 4.1 |
L6xL10 | 5.27 | 76.2 | 77 | 1 | 212.4 | 88.3 | 0.4 | 2.6 | 5.4 | 5.4 | 4.8 |
L6xL11 | 7.24 | 72.1 | 73.2 | 1 | 201.4 | 81.4 | 0.4 | 6.9 | 6 | 4.4 | 4.9 |
L6xL12 | 6.77 | 75 | 76.1 | 1 | 213.9 | 98.3 | 0.4 | 5.2 | 6.1 | 4.5 | 5.6 |
L7XL8 | 5.02 | 74.2 | 75.5 | 1 | 189.4 | 84.3 | 0.4 | 3.3 | 3.7 | 4.4 | 6.8 |
L7XL9 | 5.6 | 71.3 | 73.1 | 2 | 219.5 | 96.6 | 0.4 | 4.4 | 6.3 | 4.1 | 4 |
L7XL10 | 5.83 | 71.7 | 72 | 0 | 194.4 | 83.8 | 0.4 | 4.3 | 5.9 | 4.7 | 5.8 |
L7XL11 | 5.88 | 72.8 | 73.9 | 1 | 203.1 | 87.3 | 0.4 | 4.1 | 6.8 | 5 | 5.9 |
L7XL12 | 4.47 | 72.8 | 73.6 | 1 | 211.5 | 101.6 | 0.5 | 2.9 | 4.8 | 3.6 | 4 |
L8xL9 | 7.6 | 74.5 | 75.4 | 1 | 229 | 116.6 | 0.5 | 3.6 | 6 | 3.7 | 4.2 |
L8xL10 | 7.51 | 75.4 | 76.2 | 1 | 228.9 | 113.9 | 0.5 | 3.5 | 5.1 | 4.4 | 4.7 |
L8xL11 | 6.94 | 77.8 | 79.4 | 2 | 234.6 | 124.8 | 0.6 | 3.1 | 5.3 | 3 | 3.4 |
L8xL12 | 9.11 | 75.3 | 76.1 | 1 | 237 | 118.6 | 0.5 | 2.4 | 4.3 | 3.1 | 4 |
L9xL10 | 6.03 | 75.6 | 76.9 | 1 | 234.7 | 119.8 | 0.5 | 3.7 | 5.6 | 3.9 | 5.5 |
L9xL11 | 7.56 | 78.2 | 79.3 | 1 | 241.7 | 128.8 | 0.5 | 2.2 | 4.6 | 4.9 | 6.8 |
L9xL12 | 7.63 | 75.6 | 76.7 | 1 | 229.9 | 117.4 | 0.5 | 4.4 | 4.3 | 3.9 | 4.4 |
L10XL11 | 6.26 | 73 | 74.1 | 1 | 209.4 | 104.3 | 0.5 | 5.2 | 5.8 | 4.3 | 5.1 |
L10XL12 | 6.92 | 71.5 | 72.3 | 1 | 232.7 | 107.6 | 0.4 | 3 | 5.7 | 3.9 | 5.3 |
L11XL12 | 6.52 | 71.7 | 72.8 | 1 | 226.2 | 109.3 | 0.5 | 4.2 | 6.3 | 5.7 | 7.3 |
BH546 | 7.11 | 79.5 | 80.9 | 1 | 215 | 97.6 | 0.4 | 2.6 | 4.5 | 4.4 | 5.7 |
BH547 | 8.95 | 82.7 | 84.3 | 2 | 223.2 | 121.8 | 0.5 | 3 | 4.8 | 4.7 | 4.3 |
Maximum | 9.11 | 83.8 | 85.3 | 2 | 241.7 | 128.8 | 0.6 | 6.9 | 7.8 | 6.1 | 7.3 |
Minimum | 1.75 | 71.3 | 72 | 0 | 140.3 | 79.6 | 0.4 | 2.1 | 3.7 | 2.9 | 3 |
Average | 6.21 | 75.3 | 76.5 | 1 | 218 | 103 | 0.5 | 4.1 | 5.6 | 4.3 | 4.8 |
SE | 0.78 | 1.2 | 1.3 | 0 | 8.6 | 6.5 | 0 | 0.7 | 0.9 | 0.5 | 0.6 |
Crosses | Grain yield (t/hec) | Days to Anthesis | Days to Silking | Plant Height | Ear Height | |||||
---|---|---|---|---|---|---|---|---|---|---|
SH | SH | SH | SH | SH | ||||||
BH549 | BH545 | BH549 | BH545 | BH549 | BH545 | BH549 | BH545 | BH549 | BH545 | |
L10XL4 | 22.51 | 56.78** | -0.48 | -3.96** | -0.11 | -4.2** | 1.11 | 7.68* | -10.53 | 4.64 |
L10XL3 | 30.34* | 66.81** | -0.68 | -4.15** | 0.62 | -3.51* | -10.24** | -4.42 | -17.33* | -3.32 |
L10XL6 | 31.65* | 68.48** | 1.04 | -2.49 | 1.29 | -2.87 | -8.33* | -2.38 | -18.6* | -4.8 |
L12XL1 | 8.48 | 38.83* | -5.5** | -8.8** | -6.1** | -9.93** | -18.84** | -13.57** | -33.62** | -22.37* |
L12XL2 | 5.71 | 35.28* | -0.68 | -4.15** | -0.57 | -4.65** | -16.38** | -10.95** | -22.3** | -9.13 |
L12XL3 | 13.87 | 45.72** | -3.23* | -6.62** | -2.14 | -6.16** | -11.32** | -5.56 | -22.2** | -9.01 |
L12XL5 | 5.06 | 34.45* | -6.3** | -9.59** | -4.9** | -8.8** | -15.76** | -10.3** | -33.15** | -21.82* |
L12XL6 | 15.82 | 48.23** | -1.24 | -4.69** | -1.64 | -5.68** | -5.94 | 0.16 | -7.66 | 7.99 |
L12XL7 | 7.5 | 37.58* | 1.42 | -2.13 | 1.37 | -2.79 | -14.47** | -8.92* | -22.91** | -9.84 |
L12XL10 | 2.12 | 30.69 | 0.45 | -3.06* | 3.13 | -1.1 | -20.23** | -15.05** | -31.52** | -19.91* |
L13XL1 | 10.6 | 41.54* | 1.2 | -2.34 | 4.28* | 0 | -18.14** | -12.82** | -42.96** | -33.3** |
L13XL3 | -17.94 | 5.01 | 0.4 | -3.11* | 0.57 | -3.55* | -18.96** | -13.7** | -37.04** | -26.4** |
L13XL4 | -16.97 | 6.26 | 0.65 | -2.86* | 1.37 | -2.79 | -11.71** | -5.98 | -20.24** | -6.72 |
L13XL6 | 1.31 | 29.65 | -0.63 | -4.1** | 0.74 | -3.39* | -1.63 | 4.76 | -9.47 | 5.88 |
L13XL7 | 12.56 | 44.05** | 1.8 | -1.75 | 3.68* | -0.57 | -3.83 | 2.42 | -10.43 | 4.76 |
L13XL10 | 16.48 | 49.06** | -0.76 | -4.23** | 0.15 | -3.95* | -9.32* | -3.43 | -20.23** | -6.7 |
L13XL11 | -10.28 | 14.82 | 1.61 | -1.94 | 2.36 | -1.84 | -16** | -10.55** | -36.59** | -25.8** |
L13XL12 | 26.92* | 62.42** | -2.37 | -5.79** | -1.01 | -5.07** | -17.16** | -11.79** | -33.8** | -22.58* |
Maximum | 31.65 | 68.48 | 1.8 | -1.75 | 4.28 | 0 | 1.11 | 7.68 | -7.66 | 7.99 |
Minimum | -17.94 | 5.01 | -6.31 | -9.59 | -6.08 | -9.93 | -20.23 | -15.05 | -42.96 | -33.29 |
Average | 9.21 | 39.76 | -0.74 | -4.21 | 0.17 | -3.94 | -12.06 | -6.35 | -23.92 | -11.02 |
SE | 0.54 | 0.82 | 0.99 | 5.62 | 5.72 |
Crosses | Grain yield (t/hec) | Days to Anthesis | Days to Silking | Plant Height | Ear Height | |||||
---|---|---|---|---|---|---|---|---|---|---|
SH | SH | SH | SH | SH | ||||||
BH546 | BH547 | BH546 | BH547 | BH546 | BH547 | BH546 | BH547 | BH546 | BH547 | |
L1xL2 | -12.38 | -30.39* | -3.63** | -11** | -8.03** | -11.7** | 1.95 | -1.79 | 6.35 | -14.78* |
L1xL3 | -21.24 | -37.4** | -2.46* | -8.71** | -5.81** | -9.61** | 3.3 | -0.49 | 10.86 | -11.17 |
L1xL4 | -11.81 | -29.94* | -2.34* | -8.46** | -5.07* | -8.9** | 0.33 | -3.36 | 3.28 | -17.24* |
L1xL5 | -28.83 | -43.5** | -2.58* | -8.95** | -5.93** | -9.73** | -0.23 | -3.9 | 3.07 | -17.41* |
L1xL6 | -6.05 | -25.36* | -2.28* | -8.34** | -5.07* | -8.9** | 4.79 | 0.94 | 15.37 | -7.55 |
L1xL7 | -51.48** | -61.5** | 0.31 | -3.26 | 1.36 | -2.73 | 3.95 | 0.13 | 3.28 | -17.24* |
L1xL8 | -47.26** | -58.1** | -1.54 | -6.89** | -3.58 | -7.47** | -2.56 | -6.14 | -13.63 | -30.8** |
L1xL9 | -6.33 | -25.59* | -3.69** | -11.1** | -7.29** | -11.1** | -8.51 | -11.87* | 19.16* | -4.52 |
L1xL10 | -20.96 | -37.2** | -2.15* | -8.1** | -4.94* | -8.78** | -3.72 | -7.26 | 1.02 | -19.1** |
L1xL11 | -72.6** | -78.2** | -0.43 | -4.72* | -1.24 | -5.22* | 5.16 | 1.3 | -2.87 | -22.2** |
L1xL12 | -13.36 | -31.2** | -3.26** | -10.3** | -7.29** | -11.1** | 1.35 | -2.37 | 12.5 | -9.85 |
L2XL3 | -9.28 | -27.93* | -2.77** | -9.31** | -6.06** | -9.85** | 0.79 | -2.91 | 14.55 | -8.21 |
L2XL4 | -5.34 | -24.8* | -1.72 | -7.26** | -3.96 | -7.83** | 5.91 | 2.02 | 15.98 | -7.06 |
L2XL5 | 19.13 | -5.36 | -1.85 | -7.5** | -4.33* | -8.19** | 5.35 | 1.48 | 13.32 | -9.2 |
L2XL6 | 10.13 | -12.51 | -3.69** | -11.1** | -7.66** | -11.4** | 0.98 | -2.73 | 13.93 | -8.7 |
L2XL7 | -37.13* | -50.1** | -2.28* | -8.34** | -4.45* | -8.3** | 2.47 | -1.3 | 12.3 | -10.02 |
L2XL8 | -20.82 | -37.1** | -2.4* | -8.59** | -4.57* | -8.42** | -0.98 | -4.61 | 11.58 | -10.59 |
L2XL9 | -11.53 | -29.72* | -0.31 | -4.47* | -0.49 | -4.51* | 3.12 | -0.67 | 13.52 | -9.03 |
L2XL10 | 7.45 | -14.64 | -1.11 | -6.05** | -2.1 | -6.05** | 4.28 | 0.45 | 6.76 | -14.45* |
L2XL11 | -54.01** | -63.5** | 2.65** | 1.33 | 5.44* | 1.19 | -34.7** | -37.2** | -18.44* | -34.7** |
L2XL12 | -43.46** | -55.1** | 0 | -3.87 | 0.49 | -3.56 | -13.63* | -16.8** | -16.39 | -33** |
L3XL4 | -10.97 | -29.27* | -1.78 | -7.38** | -3.34 | -7.24** | 5.3 | 1.43 | 7.99 | -13.46 |
L3XL5 | -13.36 | -31.2** | -1.48 | -6.77** | -3.09 | -7** | 4.98 | 1.12 | 17.11 | -6.16 |
L3XL6 | -5.63 | -25.03* | -1.35 | -6.53** | -2.47 | -6.41** | 8.19 | 4.21 | 17.62 | -5.75 |
L3XL7 | -0.56 | -21.01 | -2.46* | -8.71** | -4.45* | -8.3** | 10.09 | 6.05 | 19.47* | -4.27 |
L3XL8 | -16.17 | -33.4** | -2.4* | -8.59** | -4.94* | -8.78** | 10.33 | 6.27 | 11.48 | -10.67 |
L3XL9 | 3.94 | -17.43 | -2.34* | -8.46** | -5.19* | -9.02** | 10.56 | 6.5 | 14.96 | -7.88 |
L3XL10 | 2.25 | -18.77 | -1.05 | -5.93** | -1.11 | -5.1* | 6.47 | 2.55 | 23.77** | -0.82 |
L3XL11 | -13.22 | -31.1** | -3.69** | -11.1** | -7.79** | -11.5** | 5.07 | 1.21 | 0.2 | -19.7** |
L3XL12 | -4.78 | -24.4* | -2.46* | -8.71** | -5.69** | -9.49** | -3.16 | -6.72 | -12.81 | -30.13** |
L4XL5 | -30.1* | -44.47** | -4.12** | -11.97** | -8.16** | -11.86** | 1.53 | -2.2 | 2.56 | -17.82* |
L4XL6 | -16.03 | -33.3** | -1.54 | -6.89** | -3.96 | -7.83** | 1.67 | -2.06 | 3.69 | -16.91* |
L4XL7 | -26.58 | -41.68** | -4.62** | -12.94** | -9.15** | -12.81** | -4.19 | -7.71 | -6.97 | -25.45** |
L4XL8 | -1.41 | -21.68 | -4.12** | -11.97** | -8.53** | -12.22** | 3.91 | 0.09 | 6.86 | -14.37* |
L4XL9 | -16.32 | -33.52** | -3.14** | -10.04** | -6.43** | -10.2** | -8.65 | -12.01* | -2.25 | -21.67** |
L4XL10 | -19.55 | -36.09** | -3.88** | -11.49** | -7.54** | -11.27** | 0.09 | -3.58 | -1.33 | -20.94** |
L4XL11 | -28.69 | -43.35** | -4.62** | -12.94** | -9.77** | -13.4** | 4.28 | 0.45 | -2.36 | -21.76** |
L4XL12 | -11.11 | -29.39* | -3.51** | -10.76** | -7.29** | -11.03** | 7.16 | 3.23 | 8.4 | -13.14 |
L5XL6 | -75.4** | -80.45** | -2.28* | -8.34** | -6.8** | -10.56** | -1.81 | -5.42 | -10.04 | -27.91** |
L5XL7 | -9 | -27.71* | -3.88** | -11.49** | -8.53** | -12.2** | 2.98 | -0.81 | -7.99 | -26.27** |
L5XL8 | 1.69 | -19.22 | -3.39** | -10.52** | -7.29** | -11.03** | 0.93 | -2.78 | 0.2 | -19.7** |
L5XL9 | 23.21 | -2.12 | -4.43** | -12.58** | -9.39** | -13.05** | 6.19 | 2.28 | 5.12 | -15.76* |
L5XL10 | 3.66 | -17.65 | -0.37 | -4.59* | 0.37 | -3.68 | 9.95 | 5.91 | 16.7 | -6.49 |
L5XL11 | 9.56 | -12.96 | -4.74** | -13.18** | -9.77** | -13.4** | 7.86 | 3.9 | 16.09 | -6.98 |
L5XL12 | -18.28 | -35.08** | -4.99** | -13.66** | -9.52** | -13.17** | 1.81 | -1.93 | -7.38 | -25.78** |
L6xL7 | -17.16 | -34.19** | -3.57** | -10.88** | -7.66** | -11.39** | -8.05 | -11.42* | -13.73 | -30.87** |
L6xL8 | -10.13 | -28.6* | -3.69** | -11.12** | -7.79** | -11.51** | -4 | -7.53 | -3.89 | -22.99** |
L6xL9 | -13.36 | -31.17** | -1.54 | -6.89** | -3.34 | -7.24** | -4.84 | -8.33 | -8.09 | -26.35** |
L6xL10 | -25.88 | -41.12** | -2.03* | -7.86** | -4.82* | -8.66** | -1.21 | -4.84 | -9.53 | -27.5** |
L6xL11 | 1.83 | -19.11 | -4.55** | -12.82** | -9.52** | -13.17** | -6.33 | -9.77 | -16.6 | -33.17** |
L6xL12 | -4.78 | -24.36* | -2.77** | -9.31** | -5.93** | -9.73** | -0.51 | -4.17 | 0.72 | -19.29** |
L7XL8 | -29.4* | -43.91** | -3.26** | -10.28** | -6.67** | -10.44** | -11.91* | -15.14** | -13.63 | -30.79** |
L7XL9 | -21.24 | -37.43** | -5.05** | -13.78** | -9.64** | -13.29** | 2.09 | -1.66 | -1.02 | -20.69** |
L7XL10 | -18 | -34.86** | -4.8** | -13.3** | -11** | -14.59** | -9.58 | -12.9* | -14.14 | -31.2** |
L7XL11 | -17.3 | -34.3** | -4.12** | -11.97** | -8.65** | -12.34** | -5.53 | -9.01 | -10.55 | -28.33** |
L7XL12 | -37.13* | -50.06** | -4.12** | -11.97** | -9.02** | -12.69** | -1.63 | -5.24 | 4.1 | -16.58* |
L8xL9 | 6.89 | -15.08 | -3.08** | -9.92** | -6.8** | -10.56** | 6.51 | 2.6 | 19.47* | -4.27 |
L8xL10 | 5.63 | -16.09 | -2.52* | -8.83** | -5.81** | -9.61** | 6.47 | 2.55 | 16.7 | -6.49 |
L8xL11 | -2.39 | -22.46 | -1.05 | -5.93** | -1.85 | -5.81** | 9.12 | 5.11 | 27.87** | 2.46 |
L8xL12 | 28.13 | 1.79 | -2.58* | -8.95** | -5.93** | -9.73** | 10.23 | 6.18 | 21.52* | -2.63 |
L9xL10 | -15.19 | -32.63** | -2.4* | -8.59** | -4.94* | -8.78** | 9.16 | 5.15 | 22.75* | -1.64 |
L9xL11 | 6.33 | -15.53 | -0.8 | -5.44** | -1.98 | -5.93** | 12.42* | 8.29 | 31.97** | 5.75 |
L9xL12 | 7.31 | -14.75 | -2.4* | -8.59** | -5.19* | -9.02** | 6.93 | 3 | 20.29* | -3.61 |
L10XL11 | -11.95 | -30.06* | -4** | -11.73** | -8.41** | -12.1** | -2.6 | -6.18 | 6.86 | -14.37* |
L10XL12 | -2.67 | -22.68 | -4.92** | -13.54** | -10.63** | -14.23** | 8.23 | 4.26 | 10.25 | -11.66 |
L11XL12 | -8.3 | -27.15* | -4.8** | -13.3** | -10.01** | -13.64** | 5.21 | 1.34 | 11.99 | -10.26 |
Maximum | 28.13 | 1.79 | 2.65 | 1.33 | 5.44 | 1.19 | 12.42 | 8.29 | 31.97 | 5.75 |
Minimum | -75.4 | -80.45 | -5.05 | -13.78 | -11 | -14.59 | -34.74 | -37.14 | -18.44 | -34.65 |
Average | -13.47 | -31.26 | -2.7 | -9.18 | -5.7 | -9.5 | 1.38 | -2.34 | 5.3 | -15.62 |
SE | 0.74 | 1.15 | 1.22 | 8.23 | 6.19 |
BNMRC | Bako National Maize Research Center |
EIAR | Ethiopian Institute of Agricultural Research |
SH | Standard Heterosis |
t/ha | Tone Per Hectare |
SE | Standard Error |
[1] | Abebe, M., W. Liu, W. S. White, B. Maziya-Dixon, and T. Rocheford. 2008. Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chemistry 109: 521–529. |
[2] | Ali A, Urrahman H, Shah L, Shah K. A. Rehman S (2014) Heterosis for grain yield and its attributing components in maize variety azam using line x tester analysis method. Ac. J. Agri. Res. 2: 225- 230. |
[3] | , 11, J. (2011). Major cereal grains production and use around the world. In: Awika, J. M., Piironen, V., & Bean, S. (Eds.), Advances in cereal science: implications to food processing and health promotion. American Chemical Society Atlantic City, NJ, Washington DC, pp. 1–13. |
[4] | Azmach, G., Menkir, A., Spillane, C. and Gedil, M., 2018. Genetic loci controlling carotenoid biosynthesis in diverse tropical maize lines. G3: Genes, Genomes, Genetics, 8(3), pp. 1049-1065. |
[5] | Berhanu T. 2009. Heterosis and combining ability for yield, yield-related parameters, and stover quality traits for food-feed in maize (Zea Mays L.) adapted to the mid-altitude agroecology of Ethiopia. MSc. Thesis. Haramaya University, Haramaya, Ethiopia. 199 p. |
[6] | Bullo, N. and Dagne, W. 2016. Combining the ability of inbred lines in quality protein maize (QPM) for varietal improvement. International Journal of Plant Breeding and Crop Science, 3(1): 079-089. |
[7] | Dereje Abera. Estimating Magnitude of Standard Heterosis in Mid-altitude Maize (Zea Mays L.) Hybrids for Grain Yield and Yield Related Traits at Haro Sabu, West Oromia, Ethiopia. Int J Res Agron 2023; 6(1): 31-38. |
[8] | Erenstein, O. (2010). The evolving maize sector in Asia: Challenges and opportunities. Journal of New Seeds, 11, 1–15. |
[9] | Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K. and Prasanna, B. M., 2022. Global maize production, consumption and trade: Trends and R&D implications. Food security, 14(5), pp. 1295-1319. |
[10] | Falconer DS, Mackay FC. Introduction to quantitative genetics 4th Ed. Longman Group; c1996. |
[11] |
FAOSTAT. (2023) Statistical database of the Food and Agriculture of the United Nations (Rome: FAO). Available at:
https://www.fao.org/faostat/en/#data/QCL (Accessed 29 August 2023). |
[12] |
Food and Agriculture Organization of the United Nations (FAO) (2022) FAOSTAT database. Available at:
http://www.fao.org/faostat/en/#data (Accessed Dec 26, 2022). |
[13] | Girma C. Hosana, Sentayehu Alamerew, Berhanu Tadesse & Temesgen Menamo. 2015. Test Cross Performance and Combining Ability of Maize (Zea Mays L.) Inbred Lines at Bako, Western Ethiopia, Global Journal of Science Frontier Research: Department of Agriculture and Veterinary. |
[14] | Gomez AK, Gomez AA. Statistical procedures for agricultural research, 2nd edition. John and Son, inc., Institute of science pub. New York; c1984. p. 679. |
[15] | Grote, U., Fasse, A., Nguyen, T. T., & Erenstein, O. (2021). Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Frontiers in Sustainable Food Systems, 4, 617009. https://doi.org/10.3389/fsufs.2020.617009 |
[16] | Gupta HS, Hossain F, Muthusamy V (2015) Biofortification of maize: An Indian perspective. Indian J Genet Plant Breed 75: 1–22. |
[17] | Gupta HS, Hossain F, Muthusamy V, et al (2019) Marker-assisted breeding for the enrichment of provitamin A in maize. In: Qureshi AMI (ed) Quality breeding in field crops. Springer Basel AG, Basel, pp 139–157. |
[18] | Hossain F, Konsam S, Muthusamy V, et al (2019a) Quality protein maize for nutritional security. In: Qureshi AMI et al (eds) Quality breeding in field crops. Springer Nature, Cham, pp 217–237. |
[19] | Hossain, F., Zunjare, R. U., Muthusamy, V., Bhat, J. S., Mehta, B. K., Sharma, D., Talukder, Z. A., Chhabra, R., Katral, A., Dutta, S. and Chand, G., 2022. Biofortification of maize for nutritional security. In Biofortification of staple crops (pp. 147-174). Singapore: Springer Singapore. |
[20] | Kennett, D. J., Prufer, K. M., Culleton, B. J., George, R. J., Robinson, M., Trask, W. R., Buckley, G. M., Moes, E., Kate, E. J., Harper, T. K., O’Donnell, L., Ray, E. E., Hill, E. C., Alsgaard, A., Merriman, C., Meredith, C., Edgar, H. J. H., Awe, J. J., & Gutierrez, S. M. (2020). Early isotopic evidence for maize as a staple grain in the Americas. Science Advances, 6, eaba3245. |
[21] | Kumar S, Fayaz A, Ali G, Hamid A, Lone BA, Qureshi AMI. Standard Heterosis for Grain Yield and its Attributing Traits in Early Maturing Maize Hybrids. International Journal of Plant & Soil Science: 2021. p. 418-421. |
[22] | Lemi Yadesa & Debela Diro (2022), Heterotic Groupings, Perse Performance and Standard Heterosis of Quality Protein Maize (Zea Mays L.) for Yield and Yield Contributor Traits Adapted at Mid Altitude of Ethiopia. EAS J Biotechnol Genet, 4(4), 55-67. |
[23] | Matin, M. Q. I., Rasul, M. G., Islam, A., Mian, M. K., Ivy, N. A. and Ahmed, J. U. 2017. Combining Ability and Heterosis in Maize (Zea mays L.). American Journal of Biological Science, 4(6): 84-90. |
[24] | Natol, B., Birahanu, A. and Mandefro, N. 2017. Standard Heterosis of Maize (Zea mays L.) Inbred Lines for Grain Yield and Yield Related Traits at Southern Ethiopia, Hawassa. American-Eurasian Journal of Agriculture and Environmental Science, 17 (3): 257-264. |
[25] | Nuss, E. T., and Tanumihardjo, S. A. (2010). Maize: a paramount staple crop in the context of global nutrition. Comp. Rev. Food Sci. F. 9, 417–436. |
[26] | Pillay, K., Siwela, M., Derera, J. and Veldman, F. J., 2013. Influence of biofortification with provitamin A on protein selected micronutrient composition and grain quality of maize. African Journal of Biotechnology, 12(34). |
[27] | Poole, N., Donovan, J., & Erenstein, O. (2021). Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health. Food Policy, 100, 101976. https://doi.org/10. 1016/j.foodpol.2020.101976 |
[28] | Prasanna, B. M., Palacios-Rojas, N., Hossain, F., Muthusamy, V., Menkir, A., Dhliwayo, T., Ndhlela, T., San Vicente, F., Nair, S. K., Vivek, B. S., Zhang, X., Olsen, M., & Fan, X. (2020). Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Frontiers in Genetics. |
[29] | Ranum P, Pena-Rosas JP& Garcia-Casal MN (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences 1312: 105-112. |
[30] | Reddy, V. Ram, F. J. and Sudarshan, M. R. 2015. Heterosis studies in diallel crosses of maize for yield and yield attributing traits in maize (Zea mays L.) over locations. International Journal of Agriculture, Environment, and Biotechnology, 8(2): 271-283. |
[31] | SAS (Statistical Analysis System) Institute. Statistical analysis of system software, version 9.4, SAS Institute, Include Cary, NC, USA; c2007. |
[32] | Shiferaw, B., Prasanna, B., Hellin, J., & Banziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3, 307–327. |
[33] | Tanumihardjo SA (2011) Vitamin A: biomarkers of nutrition for development. Am J Clin Nutr 94: 658–665. |
[34] | Woldu M, Habtamu Z, Mandefro N. Standard heterosis for grain yield and yield-related traits in maize (Zea mays L.) inbred lines in Haramaya District, Eastern Ethiopia. East Africa Journal of Science. 2020; 14(1): 51-64. |
[35] | Xue Y-F, Li X-J, Yan W, Miao Q, Zhang C-Y, Huang M, Sun J-B, Qi S-J, Ding Z-H and Cui Z-L (2023) Biofortification of different maize cultivars with zinc, iron, and selenium by foliar fertilizer applications. Front. Plant Sci. 14: 1144514. |
[36] | Yadava DK, Hossain F, Mohapatra T (2018) Nutritional security through crop biofortification in India: status & prospects. Indian J Med Res 148: 621–631. |
[37] | Yingjie Xiao, Shuqin Jiang, Qian Cheng, Xiaqing Wang, Jun Yan, Ruyang Zhang. The genetic mechanism of heterosis utilization in maize improvement. Genome Biology. 2021; 22(1): 1-29. |
APA Style
Yadesa, L., Garoma, B., Asefa, G. (2024). Performance of Provitamin a Maize Hybrids for Yield and Desirable Agronomic Traits. Innovation, 5(3), 95-108. https://doi.org/10.11648/j.innov.20240503.13
ACS Style
Yadesa, L.; Garoma, B.; Asefa, G. Performance of Provitamin a Maize Hybrids for Yield and Desirable Agronomic Traits. Innovation. 2024, 5(3), 95-108. doi: 10.11648/j.innov.20240503.13
AMA Style
Yadesa L, Garoma B, Asefa G. Performance of Provitamin a Maize Hybrids for Yield and Desirable Agronomic Traits. Innovation. 2024;5(3):95-108. doi: 10.11648/j.innov.20240503.13
@article{10.11648/j.innov.20240503.13, author = {Lemi Yadesa and Belay Garoma and Gemechu Asefa}, title = {Performance of Provitamin a Maize Hybrids for Yield and Desirable Agronomic Traits }, journal = {Innovation}, volume = {5}, number = {3}, pages = {95-108}, doi = {10.11648/j.innov.20240503.13}, url = {https://doi.org/10.11648/j.innov.20240503.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.innov.20240503.13}, abstract = {To find improved F1 hybrids for breeding procedures, the heterosis of maize hybrids must be determined. Therefore, to identify prospective hybrids for use in future provitamin A maize breeding systems, this study was carried out to evaluate the amount of standard heterosis for grain yield and related attributes. Fifteen provitamin A maize inbred lines were crossed through the diallel-II design. The resulting Eight four F1 hybrids along with four standard checks (BHQPY545, BH549, BH546, and BH547) were evaluated using RCBD (20 entries) and Alpha-Lattice Design (68 entries) with two replications during 2022/2023 main cropping season at Bako National Maize Research Center. Analysis of variance revealed significant variations for most of the traits indicating the existence of genetic variability. The Standard heterosis assessment noticed significant positive and negative heterosis for the majority of the traits investigated. Cross combinations over BHQPY 545, such as L10 × L3, L10 × L6, and L13×L12, demonstrated the largest proportion of traditional heterosis for grain yield (more than 25% yield advantage). Because BH546 and BH547 are normal maize with grain production potential, the majority of crossings yielded negative and significant results over commercial checks. The highest found heterosis for grain yield and associated factors indicated that maize genotypes' heterotic potential may be beneficial to boost yield. The findings of this study could be valuable for researchers looking to develop high-yielding provitamin A maize hybrids. As a result, possible hybrids might be recommended for commercial usage once the results have been verified by repeating the research over time and across places, as well as incorporating quality attributes analysis data. }, year = {2024} }
TY - JOUR T1 - Performance of Provitamin a Maize Hybrids for Yield and Desirable Agronomic Traits AU - Lemi Yadesa AU - Belay Garoma AU - Gemechu Asefa Y1 - 2024/08/20 PY - 2024 N1 - https://doi.org/10.11648/j.innov.20240503.13 DO - 10.11648/j.innov.20240503.13 T2 - Innovation JF - Innovation JO - Innovation SP - 95 EP - 108 PB - Science Publishing Group SN - 2994-7138 UR - https://doi.org/10.11648/j.innov.20240503.13 AB - To find improved F1 hybrids for breeding procedures, the heterosis of maize hybrids must be determined. Therefore, to identify prospective hybrids for use in future provitamin A maize breeding systems, this study was carried out to evaluate the amount of standard heterosis for grain yield and related attributes. Fifteen provitamin A maize inbred lines were crossed through the diallel-II design. The resulting Eight four F1 hybrids along with four standard checks (BHQPY545, BH549, BH546, and BH547) were evaluated using RCBD (20 entries) and Alpha-Lattice Design (68 entries) with two replications during 2022/2023 main cropping season at Bako National Maize Research Center. Analysis of variance revealed significant variations for most of the traits indicating the existence of genetic variability. The Standard heterosis assessment noticed significant positive and negative heterosis for the majority of the traits investigated. Cross combinations over BHQPY 545, such as L10 × L3, L10 × L6, and L13×L12, demonstrated the largest proportion of traditional heterosis for grain yield (more than 25% yield advantage). Because BH546 and BH547 are normal maize with grain production potential, the majority of crossings yielded negative and significant results over commercial checks. The highest found heterosis for grain yield and associated factors indicated that maize genotypes' heterotic potential may be beneficial to boost yield. The findings of this study could be valuable for researchers looking to develop high-yielding provitamin A maize hybrids. As a result, possible hybrids might be recommended for commercial usage once the results have been verified by repeating the research over time and across places, as well as incorporating quality attributes analysis data. VL - 5 IS - 3 ER -