| Peer-Reviewed

Hermite-Hadamard Type Integral Inequalities for Log-η-Convex Functions

Received: 9 September 2016     Accepted: 17 October 2016     Published: 9 November 2016
Views:       Downloads:
Abstract

In this paper by using the concept of log-η-convexity of functions some interesting inequalities are investigated. In fact new Hermite-Hadamard type integral inequalities involving log-η-convex function are established. The obtained results have as particular cases those previously obtained for log-convex

Published in Mathematics and Computer Science (Volume 1, Issue 4)
DOI 10.11648/j.mcs.20160104.13
Page(s) 86-92
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Log-η-Convex Functions, Integral Inequalities, Hermite-Hadamard Type Inequalities

References
[1] R. Ahlswede and D. E. Daykin, Integrals inequalities for increasing functions, Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 86(3)( 1979), 391–394.
[2] A. Aleman, On some generalizations of convex sets and convex functions, Anal. Numer. Theor. Approx. 14 (1985), 1-6.
[3] C. R. Bector and C. Singh, B-Vex functions, J. Optim. Theory. Appl. 71(2) (1991), 237-253.
[4] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, (2000).
[5] B. Definetti, Sulla stratificazioni convesse, Ann. Math. Pura. Appl. 30 (1949), 173-183.
[6] M. Eshaghi Gordji, S. S. Dragomir and M. Rostamian Delavar, An inequality related to η-convex functions (II), Int. J. Nonlinear Anal. Appl. 6(2) (2015), 26-32.
[7] M. Eshaghi Gordji, M. Rostamian Delavar and M. De La Sen, On φ-convex functions, J. Math. Inequal. 10(1) (2016), 173-183.
[8] M. Eshaghi Gordji, M. Rostamian Delavar and S. S. Dragomir, Some inequalities related to η-convex functions, Preprint, RGMIA Res. Rep. Coll. 18(2015), Art. 08. [Online http://rgmia.org/papers/v18/v18a08.pdf].
[9] M. Eshaghi, F. Sajadian and M. Rostamian Delavar, Inequalities for log-η-convex functions, to apear in Int. J. Nonlinear Anal. Appl.
[10] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), 545-550.
[11] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821-828.
[12] I. Hsu and R. G. Kuller, Convexity of vector-valued functions, Proc. Amer. Math. Soc. 46 (1974), 363-366.
[13] J. L. W. V. Jensen, On konvexe funktioner og uligheder mellem middlvaerdier, Nyt. Tidsskr. Math. B. 16 (1905), 49-69.
[14] D. Kuroiwa, Convexity for set-valued maps, Appl. Math. Lett. 9 (1996), 97-101.
[15] R. B. Manfrino, R. V. Delgado and J.A.G. Ortega, Inequalities a Mathematical Olympiad Approach, Birkha ̈user, (2009).
[16] O. L. Mangasarian, Pseudo-convex functions, SIAM Journal on Control, 3 (1965), 281-290.
[17] D. S. Mitrinovic´, J. E. Pecˇaric´, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, (1993).
[18] J. E. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, Boston, (1992).
[19] B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72-75.
[20] T. Rajba, On strong delta-convexity and Hermite-Hadamard type inequalities for delta-convex functions of higher order, Math. Inequal. Appl. 18(1) (2015), 267-293.
[21] M. Rostamian Delavar and S. S. Dragomir, On η-convexity, to appear in Math. Inequal. Appl.
[22] S. Varosanec, On h-convexity, J. Math. Anal. Appl. 326(1) (2007), 303-311.
[23] X. M. Yang, E-convex sets, E-convex functions and E-convex programming, J. Optim. Theory. Appl. 109 (2001), 699-704.
Cite This Article
  • APA Style

    Mohsen Rostamian Delavar, Farhad Sajadian. (2016). Hermite-Hadamard Type Integral Inequalities for Log-η-Convex Functions. Mathematics and Computer Science, 1(4), 86-92. https://doi.org/10.11648/j.mcs.20160104.13

    Copy | Download

    ACS Style

    Mohsen Rostamian Delavar; Farhad Sajadian. Hermite-Hadamard Type Integral Inequalities for Log-η-Convex Functions. Math. Comput. Sci. 2016, 1(4), 86-92. doi: 10.11648/j.mcs.20160104.13

    Copy | Download

    AMA Style

    Mohsen Rostamian Delavar, Farhad Sajadian. Hermite-Hadamard Type Integral Inequalities for Log-η-Convex Functions. Math Comput Sci. 2016;1(4):86-92. doi: 10.11648/j.mcs.20160104.13

    Copy | Download

  • @article{10.11648/j.mcs.20160104.13,
      author = {Mohsen Rostamian Delavar and Farhad Sajadian},
      title = {Hermite-Hadamard Type Integral Inequalities for Log-η-Convex Functions},
      journal = {Mathematics and Computer Science},
      volume = {1},
      number = {4},
      pages = {86-92},
      doi = {10.11648/j.mcs.20160104.13},
      url = {https://doi.org/10.11648/j.mcs.20160104.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.mcs.20160104.13},
      abstract = {In this paper by using the concept of log-η-convexity of functions some interesting inequalities are investigated. In fact new Hermite-Hadamard type integral inequalities involving log-η-convex function are established. The obtained results have as particular cases those previously obtained for log-convex},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Hermite-Hadamard Type Integral Inequalities for Log-η-Convex Functions
    AU  - Mohsen Rostamian Delavar
    AU  - Farhad Sajadian
    Y1  - 2016/11/09
    PY  - 2016
    N1  - https://doi.org/10.11648/j.mcs.20160104.13
    DO  - 10.11648/j.mcs.20160104.13
    T2  - Mathematics and Computer Science
    JF  - Mathematics and Computer Science
    JO  - Mathematics and Computer Science
    SP  - 86
    EP  - 92
    PB  - Science Publishing Group
    SN  - 2575-6028
    UR  - https://doi.org/10.11648/j.mcs.20160104.13
    AB  - In this paper by using the concept of log-η-convexity of functions some interesting inequalities are investigated. In fact new Hermite-Hadamard type integral inequalities involving log-η-convex function are established. The obtained results have as particular cases those previously obtained for log-convex
    VL  - 1
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran

  • Department of Mathematics, Semnan University, Semnan, Iran

  • Sections