Well-dispersed, uniform Y2O3:Yb3+/Er3+ nanospheres have been successfully prepared at 160°C via a facile hydrothermal route without using any templates, followed by a subsequent calcination process. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and upconversion photoluminescence spectra were employed to characterize the samples. The SEM and TEM images indicate that the samples consist of separated spheres with a mean diameter of about 75 nm. Under the excitation of 980-nm laser, the Y2O3:Yb3+/Er3+ phosphors exhibit bright upconversion photoluminescence from green to red with different Yb3+ content, which is easily observed by our naked eyes. Due to multicolor tunable luminescence, ideal spherical shape, and cheap materials of Y2O3 host, the as-prepared phosphors are potentially applied for color displays, back light, UC lasers, photonics, and biomedicine.
Published in | Nanoscience and Nanometrology (Volume 2, Issue 2) |
DOI | 10.11648/j.nsnm.20160202.11 |
Page(s) | 41-45 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Y2O3 Nanosphere, Hydrothermal Synthesis, Yb→Er Energy Transfer, Upconversion Luminescence
[1] | Y. Zhang, W. T. Gong, J. J. Yu, Z. Y. Cheng, G. L. Ning, RSC Adv. 2016, 6, 30886. |
[2] | X. He, B. Yan, J. Mater. Chem. C, 2014, 2, 2368. |
[3] | L. Zhou, L. Yuan, X. J. Zhou, S. S. Hu, Y. Luo, J. Yang, Chemistry Select, 2016, 1, 1848. |
[4] | S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, S. J. Kwon, J. Electrochem. Soc., 2000, 147, 3143. |
[5] | H. Wang, C. K. Lin, X. M. Liu, J. Lin, Appl. Phys. Lett., 2005, 87, 181907. |
[6] | B. Alken, W. P. Hsu, E. Matijevic, J. Am. Ceram. Soc., 1988, 71, 845. |
[7] | Z. H. Xu, Y. Gao, T. Liu, L. M. Wang, S. S. Bian, J. Lin, J. Mater. Chem., 2012, 22, 21695. |
[8] | M. S. Palmer, M. Neurock, M. M. Olken, J. Am. Chem. Soc., 2002, 124, 8452. |
[9] | J. A. Nelson, E. L. Brant, M. J. Wagner, Chem. Mater., 2003, 15, 688. |
[10] | S. S. Hu, H. G. Zhang, J. Yang, Z. H. Qiao, J. Nanosci. Nanotechnol. 2014, 14, 3853. |
[11] | X. Bai, H. W. Song, L. X. Yu, L. M. Yang, Z. X. Liu, G. H. Pan, S. Z. Lu, X. G. Ren, Y. Q. Lei, L. B. Fan, J. Phys. Chem. B, 2005, 109, 15236. |
[12] | J. Yang, C. M. Zhang, C. X. Li, Y. N. Yu, J. Lin, Inorg. Chem., 2008, 47, 7262. |
[13] | Y. W. Zhang, S. Jin, S. J. Tian, G. B. Li, T. Jia, C. S. Liao, C. H. Yan, Chem. Mater. 2001, 13, 372. |
[14] | A. W. Xu, Y. P. Fang, L. P. You, and H. Q. Liu, J. Am. Chem. Soc, 2003, 125, 1494. |
[15] | W. B. Pei, B. Chen, L. L. Wang, J. S. Wu, X. Teng, R. Lau, L. Huang, W. Huang, Nanoscale, 2015, 7, 4048. |
[16] | G. K. Das, T. Y. Tan, J. Phys. Chem. C 2008, 112, 11211. |
[17] | D. Matsuura, Appl. Phys. Lett. 2002, 81, 4526. |
[18] | A. Patra, C. S. Friend, R. Kapoor, P. N. Prasad, J. Phys. Chem. B 2002, 106, 1909. |
[19] | S. Sivakumar, F. C. J. M. van Veggel, M. Raudsepp, J. Am. Chem. Soc. 2005, 127, 12464. |
[20] | X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, L. B. Fan, J. Phys. Chem. C, 2007, 111, 13611. |
[21] | G. Y. Chen, Y. G. Zhang, G. Somesfalen, Z. G. Zhang, Q. Sun, F. P. Wang, Appl. Phys. Lett. 2006, 89, 163105. |
[22] | F. Vetrone, J. C. Boyer, J. A. Capobianco, J. Appl. Phys. 2004, 96, 661. |
[23] | J. J. Cao, L. Yuan, J. F. Tang, X. J. Zhou, J. Yang, CrystEngComm, 2016, 18, 5940. |
APA Style
Jie Yang, Jiali Gu, Renhe Yang, Qinyu Shang, Jun Yang. (2016). Hydrothermal Synthesis Y2O3:Yb3+/Er3+ Nanospheres with Upconversion Luminescence from Green to Red. Nanoscience and Nanometrology, 2(2), 41-45. https://doi.org/10.11648/j.nsnm.20160202.11
ACS Style
Jie Yang; Jiali Gu; Renhe Yang; Qinyu Shang; Jun Yang. Hydrothermal Synthesis Y2O3:Yb3+/Er3+ Nanospheres with Upconversion Luminescence from Green to Red. Nanosci. Nanometrol. 2016, 2(2), 41-45. doi: 10.11648/j.nsnm.20160202.11
@article{10.11648/j.nsnm.20160202.11, author = {Jie Yang and Jiali Gu and Renhe Yang and Qinyu Shang and Jun Yang}, title = {Hydrothermal Synthesis Y2O3:Yb3+/Er3+ Nanospheres with Upconversion Luminescence from Green to Red}, journal = {Nanoscience and Nanometrology}, volume = {2}, number = {2}, pages = {41-45}, doi = {10.11648/j.nsnm.20160202.11}, url = {https://doi.org/10.11648/j.nsnm.20160202.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nsnm.20160202.11}, abstract = {Well-dispersed, uniform Y2O3:Yb3+/Er3+ nanospheres have been successfully prepared at 160°C via a facile hydrothermal route without using any templates, followed by a subsequent calcination process. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and upconversion photoluminescence spectra were employed to characterize the samples. The SEM and TEM images indicate that the samples consist of separated spheres with a mean diameter of about 75 nm. Under the excitation of 980-nm laser, the Y2O3:Yb3+/Er3+ phosphors exhibit bright upconversion photoluminescence from green to red with different Yb3+ content, which is easily observed by our naked eyes. Due to multicolor tunable luminescence, ideal spherical shape, and cheap materials of Y2O3 host, the as-prepared phosphors are potentially applied for color displays, back light, UC lasers, photonics, and biomedicine.}, year = {2016} }
TY - JOUR T1 - Hydrothermal Synthesis Y2O3:Yb3+/Er3+ Nanospheres with Upconversion Luminescence from Green to Red AU - Jie Yang AU - Jiali Gu AU - Renhe Yang AU - Qinyu Shang AU - Jun Yang Y1 - 2016/11/03 PY - 2016 N1 - https://doi.org/10.11648/j.nsnm.20160202.11 DO - 10.11648/j.nsnm.20160202.11 T2 - Nanoscience and Nanometrology JF - Nanoscience and Nanometrology JO - Nanoscience and Nanometrology SP - 41 EP - 45 PB - Science Publishing Group SN - 2472-3630 UR - https://doi.org/10.11648/j.nsnm.20160202.11 AB - Well-dispersed, uniform Y2O3:Yb3+/Er3+ nanospheres have been successfully prepared at 160°C via a facile hydrothermal route without using any templates, followed by a subsequent calcination process. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and upconversion photoluminescence spectra were employed to characterize the samples. The SEM and TEM images indicate that the samples consist of separated spheres with a mean diameter of about 75 nm. Under the excitation of 980-nm laser, the Y2O3:Yb3+/Er3+ phosphors exhibit bright upconversion photoluminescence from green to red with different Yb3+ content, which is easily observed by our naked eyes. Due to multicolor tunable luminescence, ideal spherical shape, and cheap materials of Y2O3 host, the as-prepared phosphors are potentially applied for color displays, back light, UC lasers, photonics, and biomedicine. VL - 2 IS - 2 ER -