| Peer-Reviewed

Metals Hydrosols Universal Extinction Spectrum of 0.2 Micrometer Wavelength Ultrafine Component

Received: 18 April 2016     Accepted: 17 March 2017     Published: 8 May 2017
Views:       Downloads:
Abstract

The results of comparative experiments on hydrosol of metals and weak metal saline solution with 0.2 micrometer wavelength spectroscopy have been presented. Quality identity of the spectrum for all examined metals such as Ag, Cu, Na, Ni, Fe, has been defined. In conclusion based upon the similarities between metal colloid solutions and salt solutions with 0.2 micrometre wavelength (λ= 0.2 mkm) extinction spectra, a metal corpuscular and atomic component, as well as low level clusters were found in the solutions.

Published in Nanoscience and Nanometrology (Volume 3, Issue 1)
DOI 10.11648/j.nsnm.20170301.11
Page(s) 1-5
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Hydrosol of Metals, The Spectrum for Metals, Atomic Component in the Solutions, Metals Skin Layer, Spectrum of Absorption, Silver Hydrosol Solution, Absorbent Material Busofit, Silver Crystals

References
[1] Ostroukhov N. N., Tyanginsky A. Yu., Sleptsov V. V., Tserulev M. V. Elektrorazryadnaya Tekhnologiya polucheniya diagnostiki I biologicheskoyo primeneniye gidrozoley metallov s chastitsami nanometrovogo razmera. [Electro-discharge technology of the production, diagnostics, and biological application of hydrosols of metals with nanoparticles]. Fizika I Khimiya Obrabotki Materialov. [Physics and Chemistry of Materials Treatment], 2013, No. 1 p. 77-82. (In Russia).
[2] N. N. Ostroukhov, A. Yu. Tyanginskii, V.V. Sleptsov, and M. V. Tserulev. Electric Discharge Technology of Production and Diagnosis of Metallic Hydrosols with Nanosized Particles Inorganic Materials. Applied Research, 2014, Vol. 5, No 3, pp. 284-288.
[3] D. Yu. Kukushkin, N. N. Ostroukhov, A. Yu. Tanginsky, M. V. Tserulev. Pure hydrosol of metals: concentration of single hydrated atoms and formation of epitaxial structures on the crystal surface. MATI (Moscow Aviation Technical Institute) K. E. Tsiolkovsky, Russian State Technological University, Moscow, Russia. Fizika, Khimiya Obrabotki Materialov. [Physics and Chemistry of Materials Treatment], 2014, No 3, p. 18-25.
[4] Ph. D. N. N. Ostroukhov, MATI – Moscow State Technological University under the name of K. Ed. Tziolkovsky; Mono-crystal Nanostructures of Metal, Formed into Ultra-dispersed Impurity Free Hydrosol of Silver. Nanoengineering #7, 2014, pp. 29-33(in Russia).
[5] R. T. Askarov, PhD in Physics and Mathematics N. N. Ostroukhov, PhD A. Yu. Tyanginsky. FGBOU VPO MATI – Russian State Technological University under the name of K. Ed. Tziolkovsky. Moscow. Grinding of Frozen Nanoparticles of Colloid Solution of Silver. Nano Engineering.
[6] N. N. Ostroukhov, A. Yu. Tyanginsky. MATI – Russian State Technological University. Moscow. Russia. Physics and Chemistry of Material Treatment (Phyziks I Chimiya Obrabotki Materialov). 2016. №1, pp. 88-93.
[7] Born M., Wolf E., Principles of Optics, Cambridge, Cambridge University, 2005.
[8] Physical and Colloid Chemistry Ed. AP/ Belyaev, Moscow, GOETAR – media Publ., pp. 528-529, 534-535. (In Russian).
[9] Suzdalev I. P., Nanotechnologiya: Fiziko-khimia rastvorov nanostructures, and Nanomaterials. Moscow. Komkniga Publ., 2006, p. 592. (In Russian).
[10] Klimov V. V. Nanoplazmonika [ Nanoplssmonics]. Moscow. Fizmatlit Publ., 2009, p.480. (in Russian).
[11] Encyclopedia of Low- Temperature Plasma, Moscow, М. Nauka. 2000, v II pp. 634. ( in Russian).
[12] F. Albert Cotton, Geoffrey Wilkinson, Interscience Publishers. Devision of John Wiley & Sons. New York. London- Sydney. MIR Publishing, Moscow, 1969, pp. 78-79.
[13] Yu. А. Кrutiyakov, А. А. Kudrinski, А. Yu. Olenin, G. V. Lisichkin. Syntez I Svoistva Serebra. Dostizeniya I perspective. Uspekhi Khimii,. (in Russian) [Synthesis and Properties of Silver. Success In Chemistry.], 2008, т.77, №3, p. 242-269.
[14] B. G. Ershov. Nanochastitzi metallov v vodnich rastvorac: electronnie I kataliticheskie svoistva. Rossiisky Chimicheski Zhurnal. [Nanoparticles of Metals in Water Solutions: electrical, optical and catalytic properties Journal of Chemistry.] 2002, т.45, №3, p.20-30.
[15] B. G. Ershov, V. I. Roldugin, V. M. Rudoi, P. A. Morozov, O.V. Dementieva. Size Effect of Gold Nanoparticles Absorption While Ozone Absorb. Publishing House - Science. Colloid Journal. 2012, т.74, №6, p. 721.
[16] G. A. Dorofeev, A. N. Streletzki., I. V. Povstugar, A. V. Protasov, E. P. Elkusov. Nanoparticles’ Size Measurement by X-Ray Diffraction. Colloid Journal. 2012, т.74, №6, p. 710.
[17] Е. М. Egorova. Metal Nanoparticles in Solutions: Biosynthesis’s Aplication. Nanotechnology. 2004, №1, p.15-26., №1, с.15-26.].
[18] S. Karpov. Optical Memory of Metal Nanoparticles’ Units. The Photonics. 2008 p 67-71.
[19] S. Karpov. Optical Effects in Metal Nano Colloids. The Photonics. 2012. №2. p334.
Cite This Article
  • APA Style

    Nikolay N. Ostroukhov, Alexander Yu. Tyanginskii, Maria V. Lebedeva. (2017). Metals Hydrosols Universal Extinction Spectrum of 0.2 Micrometer Wavelength Ultrafine Component. Nanoscience and Nanometrology, 3(1), 1-5. https://doi.org/10.11648/j.nsnm.20170301.11

    Copy | Download

    ACS Style

    Nikolay N. Ostroukhov; Alexander Yu. Tyanginskii; Maria V. Lebedeva. Metals Hydrosols Universal Extinction Spectrum of 0.2 Micrometer Wavelength Ultrafine Component. Nanosci. Nanometrol. 2017, 3(1), 1-5. doi: 10.11648/j.nsnm.20170301.11

    Copy | Download

    AMA Style

    Nikolay N. Ostroukhov, Alexander Yu. Tyanginskii, Maria V. Lebedeva. Metals Hydrosols Universal Extinction Spectrum of 0.2 Micrometer Wavelength Ultrafine Component. Nanosci Nanometrol. 2017;3(1):1-5. doi: 10.11648/j.nsnm.20170301.11

    Copy | Download

  • @article{10.11648/j.nsnm.20170301.11,
      author = {Nikolay N. Ostroukhov and Alexander Yu. Tyanginskii and Maria V. Lebedeva},
      title = {Metals Hydrosols Universal Extinction Spectrum of 0.2 Micrometer Wavelength Ultrafine Component},
      journal = {Nanoscience and Nanometrology},
      volume = {3},
      number = {1},
      pages = {1-5},
      doi = {10.11648/j.nsnm.20170301.11},
      url = {https://doi.org/10.11648/j.nsnm.20170301.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nsnm.20170301.11},
      abstract = {The results of comparative experiments on hydrosol of metals and weak metal saline solution with 0.2 micrometer wavelength spectroscopy have been presented. Quality identity of the spectrum for all examined metals such as Ag, Cu, Na, Ni, Fe, has been defined. In conclusion based upon the similarities between metal colloid solutions and salt solutions with 0.2 micrometre wavelength (λ= 0.2 mkm) extinction spectra, a metal corpuscular and atomic component, as well as low level clusters were found in the solutions.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Metals Hydrosols Universal Extinction Spectrum of 0.2 Micrometer Wavelength Ultrafine Component
    AU  - Nikolay N. Ostroukhov
    AU  - Alexander Yu. Tyanginskii
    AU  - Maria V. Lebedeva
    Y1  - 2017/05/08
    PY  - 2017
    N1  - https://doi.org/10.11648/j.nsnm.20170301.11
    DO  - 10.11648/j.nsnm.20170301.11
    T2  - Nanoscience and Nanometrology
    JF  - Nanoscience and Nanometrology
    JO  - Nanoscience and Nanometrology
    SP  - 1
    EP  - 5
    PB  - Science Publishing Group
    SN  - 2472-3630
    UR  - https://doi.org/10.11648/j.nsnm.20170301.11
    AB  - The results of comparative experiments on hydrosol of metals and weak metal saline solution with 0.2 micrometer wavelength spectroscopy have been presented. Quality identity of the spectrum for all examined metals such as Ag, Cu, Na, Ni, Fe, has been defined. In conclusion based upon the similarities between metal colloid solutions and salt solutions with 0.2 micrometre wavelength (λ= 0.2 mkm) extinction spectra, a metal corpuscular and atomic component, as well as low level clusters were found in the solutions.
    VL  - 3
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Physics and Mathematics, MAI - Scientific Research University, Moscow, Russia

  • Electrical Engineering and Technology, MAI - Scientific Research University, Moscow, Russia

  • Electrical Engineering, Mechanics and Technology, MAI - Scientific Research University, Moscow, Russia

  • Sections