Original sentence: "Erosion corrosion is a significant factor contributing to the thinning and failure of oil pipelines. This paper addresses the issue of erosion corrosion of oil pipelines in oil fields under the action of multiphase flow, the main factors affecting the erosion corrosion are introduced, including the hydrodynamic factors, solid particle properties, fluid medium properties and temperature, It summarizes and analyzes the mechanisms through which these different factors affect the erosion corrosion of oil pipelines. The paper points out that increased fluid velocity in oil pipelines, sudden changes in flow patterns, and turbulent kinetic energy can accelerate erosion corrosion to some extent, With the increase of flow rate, erosion corrosion mechanism will change from electrochemical corrosion dominant to erosion accelerated corrosion, There is a maximum value for erosion corrosion based on the solid particle impact angle. The harder and sharper the solid particles are, the stronger their impact on the pipeline, especially the impact of low Angle impact is more significant; however, the diameter and quantity of particles can affect the development of erosion corrosion due to 'particle size effect' and 'shielding effect.' Additionally, lower pH values and higher temperatures of the fluid medium will increase pipeline erosion corrosion. Finally, future research directions for studying erosion corrosion in oilfield pipelines under multiphase flow conditions are discussed in light of existing research."
Published in | Science Discovery (Volume 12, Issue 4) |
DOI | 10.11648/j.sd.20241204.12 |
Page(s) | 83-88 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Oil Pipeline, Erosion Corrosion, Influencing Factors, Fluid Mechanics, Multiphase Flow
[1] | Aguirre J, Walczak M, Rohw E M. The mechanism of erosion-corrosion of API X65 steel under turbulent slurry flow: effect of nominal flow velocity and oxygen content [J]. Wear, 2019, 426/42part B): 1379-1391. |
[2] | 原徐杰. 油气输送管道内冲刷腐蚀的研究进展 [J]. 电镀与涂饰, 2016, 35(20): 1091-1094. |
[3] | 徐洪敏, 杨燕, 陈虎, 等. 砂粒浓度对X80管线钢冲刷腐蚀行为的影响 [J]. 油气田地面工程, 2018, 37(07): 74-77. |
[4] | 刘莉桦, 才政. 油气管道两相流体冲刷腐蚀研究现状及展望 [J]. 化工管理, 2021, (23): 139-140. |
[5] | Rihan R O, Nesic S. Erosion-corrosion of mild steel in hot caustic. Part I: NaOH solution [J]. Corros. Sci, 2006, 48(9): 2633-2659. |
[6] | Wang Z B, Zheng Y G, Yi J Z. The role of surface film on the critical flow velocity for erosion-corrosion of pure titanium [J]. Tribology International, 2019, 133(9): 67-72. |
[7] | 黄辉, 陈立秋, 刘智勇. 典型酸性天然气对16Mn钢的冲刷腐蚀影响 [J]. 腐蚀与防护, 2021, 42(12): 44-50+67. |
[8] | 樊学华, 柳伟, 祝亚茹, 等. 高温高压条件下流速对X70钢CO2冲刷腐蚀行为的影响 [J]. 表面技术, 2020, 49(12): 296-304. |
[9] | 王海红, 王平, 闫龚杰, 等. N80套管钢在液固两相流中的冲刷腐蚀行为 [J]. 石油工程建设, 2021, 47(01): 10-14. |
[10] | 陈虎, 周昊, 王树立, 等. 含砂NaCl水溶液中流速对N80钢冲刷腐蚀行为的影响 [J]. 腐蚀与防护, 2018, 39(12): 936-940. |
[11] | 王凯, 南翠红, 卢金玲, 等. 流体动力学过程在流动腐蚀行为中的作用机制 [J]. 化工进展, 2020, 39(S2): 8-18. |
[12] | 吴成红, 甘复兴. 金属在两相流动水体中的冲刷腐蚀 [J]. 材料保护. 2000, (04): 33-35+61. |
[13] | 杜琮昊, 白秀琴. 海洋环境下典型金属材料腐蚀与磨损研究进展 [J]. 润滑与密封. 2021, 46(02): 121-133. |
[14] | 王伟志, 扈俊颖, 钟显康. 油气生产与输送过程中冲刷腐蚀的研究进展 [J]. 材料保护, 2021, 54(09): 123-132. |
[15] | 王兴国, 张路鑫, 黄志诚, 等. 管道冲刷腐蚀缺陷对超声测量流体速度的影响 [J]. 计量学报, 2021, 42(12): 1611-1619. |
[16] | 沈雅欣, 赵会军, 彭浩平, 等. 90°竖直弯管的液固两相流冲刷腐蚀模拟 [J]. 腐蚀与防护, 2020, 41(01): 50-57. |
[17] | 胡宗武, 刘建国, 邢蕊, 等. 单相流条件下90°水平弯管冲刷腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40(02): 115-122. |
[18] | 王彦骅, 吴玉国, 张绍川, 等. π型管的冲刷腐蚀数值模拟 [J]. 表面技术, 2020, 49(12): 259-266. |
[19] | 王彦骅, 吴玉国, 张绍川, 等. 流体力学因素对液固两相流冲刷腐蚀的影响 [J]. 石油化工设备, 2006, (06): 20-23. |
[20] | 梁颖, 袁宗明, 陈学敏, 等. 基于CFD的液固两相流冲刷腐蚀预测研究 [J]. 石油化工应用, 2014, 33(02): 103-106. |
[21] | 尹承军. B10合金在模拟海水中的冲刷腐蚀研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012. |
[22] | Tang X, Xu L Y, Cheng Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil-sand slurry. Ⅱ: Synergism of erosion and corrosion [J]. Corros. Sci., 2008, 50(5): 1469-1474. |
[23] | 邢建东, 高义民, 张强赏. 不锈钢与高碳钢的冲刷腐蚀磨损试验研究 [J]. 西安交通大学学报, 2004, (05): 469-473. |
[24] | Abedini M, Ghasemi H M. Synergistic erosion-corrosion behavior of Al-brass alloy at various impingement angles [J]. Wear, 2014, 319(1/2): 49-55. |
[25] | 孟文波, 张佳旋, 张崇, 等. 井下管柱钢材冲蚀-CO2腐蚀耦合试验 [J]. 中国石油大学学报(自然科学版), 2021, 45(03): 104-110. |
[26] | 王雪, 夏晞冉, 秦永光, 等. 油气田设备多相流冲蚀磨损主控因素研究进展 [J]. 安全、健康和环境, 2021, 21(05): 1-6. |
[27] | 陈艳, 黄威, 董彩常. 海水管路冲刷腐蚀数值模拟研究现状 [J]. 装备环境工程, 2016, 13(04): 48-53. |
[28] | Talaghat M R, Esmaeilzadeh F, Mowla D. Sand production control by chemical consolidation [J]. Journal of Petroleum Science and Engineering, 2009, 67(1/2): 34-40. |
[29] | 姜志超, 杨燕, 彭浩平, 等. X80钢在不同砂粒粒径下的多相流中的冲刷腐蚀行为 [J]. 油气田地面工程, 2018, 37(11): 76-79. |
[30] | Meng H, HU X, NEVILLE A. A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design [J]. Wear, 2007, 263(1-6): 355-362. |
[31] | 王凯. 油井管材料液固两相流体冲刷腐蚀研究 [D]. 西安: 西安石油大学, 2013: 40-57. |
[32] | 徐哲. 液固两相流条件下P110钢冲刷腐蚀研究 [D]. 大庆: 东北石油大学, 2011: 14-20, 45-46. |
[33] | 周昊, 吉庆丰, 刘雯, 等. 油气田套管用钢两相流流动腐蚀 [J]. 排灌机械工程学报, 2020, 38(06): 602-606. |
[34] | 裴芮, 王勤英, 唐淼, 等. 激光熔覆层冲刷腐蚀研究现状 [J]. 表面技术, 2019, 48(11): 179-187. |
[35] | 李涌泉, 田进. pH值对N80钢固液两相冲刷腐蚀的影响 [J]. 表面技术, 2013, 42(05): 29-31. |
[36] | 周昊, 陈虎, 刘雯, 等. 油套管钢两相流冲刷腐蚀行为及协同效应研究 [J]. 常州大学学报(自然科学版), 2020, 32(06): 60-68. |
[37] | 廖柯熹, 覃敏, 何国玺, 等. 油气集输管线冲刷腐蚀规律研究进展 [J]. 材料保护, 2020, 53(07): 126-136. |
[38] | 李家锋. CO2采油井油管腐蚀影响因素及防治措施研究 [J]. 能源化工, 2021, 42(01): 47-50. |
[39] | 谢涛, 林海, 许杰, 等. 不同材质油套管钢的CO2腐蚀行为 [J]. 表面技术, 2017, 46(01): 11-217. |
[40] | 白羽, 李自力, 程远鹏. 集输管线钢在CO2/油/水多相流环境中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38(03): 204-207+213. |
[41] | 何鹊, 张娜, 许宝善, 等. 石油化工管道冲刷腐蚀失效分析与预测 [J]. 化工设计通讯, 2022, 48(05): 18-20. |
[42] | Tian B R, Cheng Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil sand slurry I: Effects of hydrodynamic condition [J]. Corros Sci, 2008, 50(3): 773-779. |
[43] | 方信贤, 巴志新, 甄睿, 等. 腐蚀介质温度对316L/Ni-P镀层腐蚀及电化学行为影响 [J]. 材料热处理学报, 2014, 35(06): 180-185. |
[44] | Levy E. Advanced Materials-From Strength to Strength [J]. Advanced Materials, 2010, 14(15): 1019-1021. |
APA Style
Zhu, H. (2024). Research Progress on Influencing Factors of Erosion Corrosion in Oil Pipelines. Science Discovery, 12(4), 83-88. https://doi.org/10.11648/j.sd.20241204.12
ACS Style
Zhu, H. Research Progress on Influencing Factors of Erosion Corrosion in Oil Pipelines. Sci. Discov. 2024, 12(4), 83-88. doi: 10.11648/j.sd.20241204.12
AMA Style
Zhu H. Research Progress on Influencing Factors of Erosion Corrosion in Oil Pipelines. Sci Discov. 2024;12(4):83-88. doi: 10.11648/j.sd.20241204.12
@article{10.11648/j.sd.20241204.12, author = {Hongbo Zhu}, title = {Research Progress on Influencing Factors of Erosion Corrosion in Oil Pipelines }, journal = {Science Discovery}, volume = {12}, number = {4}, pages = {83-88}, doi = {10.11648/j.sd.20241204.12}, url = {https://doi.org/10.11648/j.sd.20241204.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sd.20241204.12}, abstract = {Original sentence: "Erosion corrosion is a significant factor contributing to the thinning and failure of oil pipelines. This paper addresses the issue of erosion corrosion of oil pipelines in oil fields under the action of multiphase flow, the main factors affecting the erosion corrosion are introduced, including the hydrodynamic factors, solid particle properties, fluid medium properties and temperature, It summarizes and analyzes the mechanisms through which these different factors affect the erosion corrosion of oil pipelines. The paper points out that increased fluid velocity in oil pipelines, sudden changes in flow patterns, and turbulent kinetic energy can accelerate erosion corrosion to some extent, With the increase of flow rate, erosion corrosion mechanism will change from electrochemical corrosion dominant to erosion accelerated corrosion, There is a maximum value for erosion corrosion based on the solid particle impact angle. The harder and sharper the solid particles are, the stronger their impact on the pipeline, especially the impact of low Angle impact is more significant; however, the diameter and quantity of particles can affect the development of erosion corrosion due to 'particle size effect' and 'shielding effect.' Additionally, lower pH values and higher temperatures of the fluid medium will increase pipeline erosion corrosion. Finally, future research directions for studying erosion corrosion in oilfield pipelines under multiphase flow conditions are discussed in light of existing research." }, year = {2024} }
TY - JOUR T1 - Research Progress on Influencing Factors of Erosion Corrosion in Oil Pipelines AU - Hongbo Zhu Y1 - 2024/07/23 PY - 2024 N1 - https://doi.org/10.11648/j.sd.20241204.12 DO - 10.11648/j.sd.20241204.12 T2 - Science Discovery JF - Science Discovery JO - Science Discovery SP - 83 EP - 88 PB - Science Publishing Group SN - 2331-0650 UR - https://doi.org/10.11648/j.sd.20241204.12 AB - Original sentence: "Erosion corrosion is a significant factor contributing to the thinning and failure of oil pipelines. This paper addresses the issue of erosion corrosion of oil pipelines in oil fields under the action of multiphase flow, the main factors affecting the erosion corrosion are introduced, including the hydrodynamic factors, solid particle properties, fluid medium properties and temperature, It summarizes and analyzes the mechanisms through which these different factors affect the erosion corrosion of oil pipelines. The paper points out that increased fluid velocity in oil pipelines, sudden changes in flow patterns, and turbulent kinetic energy can accelerate erosion corrosion to some extent, With the increase of flow rate, erosion corrosion mechanism will change from electrochemical corrosion dominant to erosion accelerated corrosion, There is a maximum value for erosion corrosion based on the solid particle impact angle. The harder and sharper the solid particles are, the stronger their impact on the pipeline, especially the impact of low Angle impact is more significant; however, the diameter and quantity of particles can affect the development of erosion corrosion due to 'particle size effect' and 'shielding effect.' Additionally, lower pH values and higher temperatures of the fluid medium will increase pipeline erosion corrosion. Finally, future research directions for studying erosion corrosion in oilfield pipelines under multiphase flow conditions are discussed in light of existing research." VL - 12 IS - 4 ER -