-
Emerging Smart Grid Communication Technology for Mitigating Power Distribution Network Problems
Aparna S. Telang,
Prashant P. Bedekar,
Ashish K. Duchakke
Issue:
Volume 4, Issue 1, March 2019
Pages:
1-6
Received:
22 March 2019
Accepted:
26 April 2019
Published:
23 May 2019
Abstract: Communication network is an integral part of an intelligent based fully automated smart grid system. It plays an important role in the framework of the transition towards distribution side of the smart grid system. Power theft, Fault detection, Overloading etc. are some of the important issues on the power distribution networks. To address these issues, a novel Arduino based prototype model “Smart Electricity System” has been proposed in this paper. It includes global system for mobile communication (GSM) for its effective implementation on the distribution network. Moreover another novel feature, Advanced Metering Infrastructure (AMI) is added to the proposed model. This is the key technology deployed on the distribution side of the smart grid system. The Uniqueness of the proposed model lies in the detection of power theft, where the information is sent to MSEB directly via interactive model of GSM 800 and APR voice kit, in the fault detection and its isolation by proper coordination between relay and Aurdino and in the overloading warning. Doing so, not only electricity is conserved but also the safety of living beings and protection of electrical appliances can be achieved effectively. Modern controllers with effective sensors are used to achieve all these issues for greater accuracy.
Abstract: Communication network is an integral part of an intelligent based fully automated smart grid system. It plays an important role in the framework of the transition towards distribution side of the smart grid system. Power theft, Fault detection, Overloading etc. are some of the important issues on the power distribution networks. To address these is...
Show More
-
Fingerprint Recognition Using Markov Chain and Kernel Smoothing Technique with Generalized Regression Neural Network and Adaptive Resonance Theory with Mapping
Issue:
Volume 4, Issue 1, March 2019
Pages:
7-12
Received:
4 April 2019
Accepted:
16 May 2019
Published:
4 June 2019
Abstract: The necessity of fast and precise identification from fingerprints might be fulfilled via systems benefiting from intelligent elements such as Neural Networks. The process of recognition and classification have been performed according to beneficial points called core point, singularities, or minutiae. However, points always are sensitive to noise and distortion, thus inaccurate results. Hence, instead of extracting a point, two lines are defined to bring down the risk of finding a point. Plus, two approaches are proposed with the intention of extracting statistical features predicated upon Kernel and Markov chain. In fact, two sets of features are extracted from both horizontal and vertical Markov chain, derived from the ridges angle around the aforementioned lines. In addition, all features are trained and tested via two divergent neural networks, consisting Generalized Regression Neural Network (GRNN) and Adaptive Resonance Theory with mapping (ARTMAP). Fingerprint verification competition (FVC) database is used to analyze the system. The performances of networks with different sets of features are simulated and compared with MATLAB. The results coming from simulation are compared and 93.5% and 83.5% accuracy is achieved for GRNN and ARTMAP respectively. Furthermore, the system is tested by both networks with features coming from just vertical and horizontal features.
Abstract: The necessity of fast and precise identification from fingerprints might be fulfilled via systems benefiting from intelligent elements such as Neural Networks. The process of recognition and classification have been performed according to beneficial points called core point, singularities, or minutiae. However, points always are sensitive to noise ...
Show More
-
Systematic Approach Towards Computer Aided Non-Linear Control System Analysis Using Describing Function Models
Aparna Sadanand Telang,
Prashant Prabhakar Bedekar
Issue:
Volume 4, Issue 1, March 2019
Pages:
13-20
Received:
22 March 2019
Accepted:
30 April 2019
Published:
18 June 2019
Abstract: In recent years, control system problems involving non linearities are important concerns in the framework of automation industries. Actuators with non-linear behavior such as saturation, dead zone, relay, backlash etc. may be responsible for poor control performance in the system. The analysis of these non-linearities is an important task for a control system engineer. Moreover the methods of analyzing these non-linearities are time consuming and non-generic. This paper presents simple and systematic approach for analyzing such kind of non-linearities using user-friendly MATLAB tool “Nonlintool”. This tool saves the time as well as provides visual effects for analysis. Main contribution of this paper is to show how user friendly MATLAB tool “Nonlintool” can extensively be used for quicker and wider interpretation of results based on describing function models. The novelty of this paper lies in analyzing all kinds of non-linearities along with their impact on stability of the nonlinear system. The performance has been evaluated for varying conditions of magnitude and gain of the system as well as on various transfer function models. The results of stability analysis, for which only standard transfer function model is considered, are presented here.
Abstract: In recent years, control system problems involving non linearities are important concerns in the framework of automation industries. Actuators with non-linear behavior such as saturation, dead zone, relay, backlash etc. may be responsible for poor control performance in the system. The analysis of these non-linearities is an important task for a co...
Show More
-
QoS Aware Cloud Based Routing Protocol for Security Improvement of Hybrid Wireless Network
Uma Khemchand Thakur,
Chandrashekhar Dethe
Issue:
Volume 4, Issue 1, March 2019
Pages:
21-26
Received:
9 April 2019
Accepted:
28 May 2019
Published:
20 June 2019
Abstract: The recent advances and the convergence of micro electro-mechanical systems technology, integrated circuit technologies, microprocessor hardware and Nano-technology, wireless communications, Ad-hoc networking routing protocols, distributed signal processing, and embedded systems have made the concept of Wireless Sensor Networks (WSNs). Sensor network nodes are limited with respect to energy supply, restricted computational capacity and communication bandwidth. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. To prolong the lifetime of the sensor nodes, designing efficient routing protocols is critical. Even though sensor networks are primarily designed for monitoring and reporting events, since they are application dependent, a single routing protocol cannot be efficient for sensor networks across all applications. In this paper, we analyze the design issues of sensor networks and present a classification and comparison of routing protocols. This comparison reveals the important features that need to be taken into consideration while designing and evaluating new routing protocols for sensor networks. A reliable transmission of packet data information, with low latency and high energy-efficiency, is truly essential for wireless sensor networks, employed in delay sensitive industrial control applications. The proper selection of the routing protocol to achieve maximum efficiency is a challenging task, since latency, reliability and energy consumption are inter-related with each other. It is observed that, Quality of Service (QoS) of the network can improve by minimizing delay in packet delivery, and life time of the network, can be extend by using suitable energy efficient routing protocol.
Abstract: The recent advances and the convergence of micro electro-mechanical systems technology, integrated circuit technologies, microprocessor hardware and Nano-technology, wireless communications, Ad-hoc networking routing protocols, distributed signal processing, and embedded systems have made the concept of Wireless Sensor Networks (WSNs). Sensor netwo...
Show More