Electrocoagulation (EC) process has been largely found efficient in terms of pathogens removal. This literature review focuses on describing the key killing microorganisms' pathway followed throughout the EC technique. The pathogens removal route using EC is deeply assessed following the practical experimentation realized during these last years. Physical elimination and chemical deactivation pathways are suggested for bacteria reduction procedure throughout the EC method employing Fe/Al anodes: (1) entrapping pathogens in flocs, (2) destabilizing negatively charged microbes through sweep flocculation, and (3) demobilizing bacteria cell envelopes upon electrochemically formed reactive oxygen species or direct impact of the electric field. Finally, deepest investigation works on microbes’ removal through EC are more called to promote the industrial applications of this performant technology.
Published in | Applied Engineering (Volume 3, Issue 1) |
DOI | 10.11648/j.ae.20190301.11 |
Page(s) | 1-12 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Electrocoagulation (EC), Electrochemical Disinfection, Electric Field (EF), Electro-Fenton (EF), Microorganisms
[1] | D. Ghernaout, B. Ghernaout, M. W. Naceur, Embodying the chemical water treatment in the green chemistry – A review, Desalination 271 (2011) 1-10. |
[2] | R. K. Sharma, S. Gulati, A. Puri, Green chemistry solutions to water pollution (Ch. 3), Water reclamation and sustainability. http://dx.doi.org/10.1016/B978-0-12-411645-0.00003-1 57, 2014 Elsevier Inc., Amsterdam. |
[3] | K. Govindan, A. Angelin, M. Rangarajan, Critical evaluation of mechanism responsible for biomass abatement during electrochemical coagulation (EC) process: A critical review, J. Environ. Manag. 227 (2018) 335-353. |
[4] | S. Gao, J. Yang, J. Tian, F. Ma, G. Tu, M. Du, Electro-coagulation–flotation process for algae removal, J. Hazard. Mater. 177 (2010) 336-343. |
[5] | M. Mascia, A. Vacca, S. Palmas, Electrochemical treatment as a pre-oxidative step for algae removal using Chlorella vulgaris as a model organism and BDD anodes, Chem. Eng. J. 219 (2013) 512-519. |
[6] | B. Zhu, D. A. Clifford, S. Chellam, Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes, Water Res. 39 (2005) 3098-3108. |
[7] | C. T. Tanneru, S. Chellam, Mechanisms of virus control during iron electrocoagulation - Microfiltration of surface water, Water Res. 46 (2012) 2111-2120. |
[8] | D. Ghernaout, Environmental principles in the Holy Koran and the Sayings of the Prophet Muhammad, Am. J. Environ. Prot. 6 (2017) 75-79. |
[9] | D. Ghernaout, The best available technology of water/wastewater treatment and seawater desalination: Simulation of the open sky seawater distillation, Green Sustain. Chem. 3 (2013) 68-88. |
[10] | D. Ghernaout, B. Ghernaout, On the concept of the future drinking water treatment plant: Algae harvesting from the algal biomass for biodiesel production––A Review, Desalin. Water Treat. 49 (2012) 1-18. |
[11] | D. Ghernaout, B. Ghernaout, From chemical disinfection to electrodisinfection: The obligatory itinerary? Desalin. Water Treat. 16 (2010) 156-175. |
[12] | D. Ghernaout, A. Simoussa, A. Alghamdi, B. Ghernaout, N. Elboughdiri, A. Mahjoubi, M. Aichouni, A. E. A. El-Wakil, Combining lime softening with alum coagulation for hard Ghrib dam water conventional treatment, Inter. J. Adv. Appl. Sci. 5 (2018) 61-70. |
[13] | D. Ghernaout, A. Badis, G. Braikia, N. Matâam, M. Fekhar, B. Ghernaout, A. Boucherit, Enhanced coagulation for algae removal in a typical Algeria water treatment plant, Environ. Eng. Manag. J. 16 (2017) 2303-2315. |
[14] | D. Ghernaout, A. Boucherit, Review of coagulation’s rapid mixing for NOM removal, J. Res. Develop. Chem., 2015, DOI: 10.5171/2015.926518. |
[15] | D. Ghernaout, Water treatment chlorination: An updated mechanistic insight review, Chem. Res. J. 2 (2017) 125-138. |
[16] | D. Ghernaout, Disinfection and DBPs removal in drinking water treatment: A perspective for a green technology, Int. J. Adv. Appl. Sci. 5 (2018) 108-117. |
[17] | A. Boucherit, S. Moulay, D. Ghernaout, A. I. Al-Ghonamy, B. Ghernaout, M. W. Naceur, N. Ait Messaoudene, M. Aichouni, A. A. Mahjoubi, N. A. Elboughdiri, New trends in disinfection by-products formation upon water treatment, J. Res. Develop. Chem., 2015, DOI: 10.5171/2015.628833. |
[18] | D. Ghernaout, M. W. Naceur, A. Aouabed, On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment, Desalination 270 (2011) 9-22. |
[19] | D. Ghernaout, S. Moulay, N. Ait Messaoudene, M. Aichouni, M. W. Naceur, A. Boucherit, Coagulation and chlorination of NOM and algae in water treatment: A review, Intern. J. Environ. Monit. Analy. 2 (2014) 23-34. |
[20] | D. A. Keane, K. G. McGuigan, P. F. Ibáñez, M. I. Polo-López, J. A. Byrne, P. S. M. Dunlop, K. O’Shea, D. D. Dionysiou, S. C. Pillai, Solar photocatalysis for water disinfection: materials and reactor design, Catal. Sci. Technol. 4 (2014) 1211-1226. |
[21] | R. Fagan, D. E. McCormack, D. D. Dionysiou, S. C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process. 42 (2016) 2-14. |
[22] | D. Ghernaout, Advanced oxidation phenomena in electrocoagulation process: A myth or a reality? Desalin. Water Treat. 51 (2013) 7536-7554. |
[23] | A. Medel, J. A. Ramírez, J. Cárdenas, I. Sirés, Y. Meas, Evaluating the electrochemical and photoelectrochemical production of hydroxyl radical during electrocoagulation process, Sep. Purif. Technol. (2018), https://doi.org/10.1016/j.seppur.2018.05.021. |
[24] | F. C. Moreira, R. A. R. Boaventura, E. Brillas, V. J. P. Vilar, Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Appl. Catal. B: Environ. 202 (2017) 217-261. |
[25] | E. A. S. Dimapilis, C.-S. Hsu, R. M. O. Mendoza, M.-C. Lu, Zinc oxide nanoparticles for water disinfection, Sustain. Environ. Res. 28 (2018) 47-56. |
[26] | S. Ghasemian, B. Asadishad, S. Omanovic, N. Tufenkji, Electrochemical disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide electrodes, Water Res. 126 (2017) 299-307. |
[27] | D. Ghernaout, Magnetic field generation in the water treatment perspectives: An overview, Int. J. Adv. Appl. Sci. 5 (2018) 193-203. |
[28] | D. Ghernaout, Water reuse (WR): The ultimate and vital solution for water supply issues, Intern. J. Sustain. Develop. Res. 3 (2017) 36-46. |
[29] | M. Taleb Ahmed, T. Chaabane, R. Maachi, A. Darchen, Efficiency of a pretreatment by electrocoagulation with aluminum electrodes in a nanofiltration treatment of polluted water, Procedia Eng. 33 (2012) 465-474. |
[30] | S. Cotillas, J. Llanos, M. A. Rodrigo, P. Cañizares, Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters, Appl. Catal. B: Environ. 162 (2015) 252-259. |
[31] | D. Ghernaout, A. Badis, B. Ghernaout, A. Kellil, Application of electrocoagulation in Escherichia Coli culture and two surface waters, Desalination 219 (2008) 118-125. |
[32] | K. Ninomiya, M. Arakawa, C. Ogino, N. Shimizu, Inactivation of Escherichia coli by sonoelectrocatalytic disinfection using TiO2 as electrode, Ultrason. Sonochem. 20 (2013) 762-767. |
[33] | X. Huang, Y. Qu, C. A. Cid, C. Finke, M. R. Hoffmann, K. Lim, S. C. Jiang, Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell, Water Res. 92 (2016) 164-172. |
[34] | X. Cui, A. N. Quicksall, A. B. Blake, J. W. Talley, Electrochemical disinfection of Escherichia coli in the presence and absence of primary sludge particulates, Water Res. 47 (2013) 4383-4390. |
[35] | J. Rodríguez-Chueca, A. Mediano, M. P. Ormad, R. Mosteo, J. L. Ovelleiro, Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields, Water Res. 60 (2014) 250-258. |
[36] | V. M. Gómez-López, M. I. Gil, L. Pupunat, A. Allende, Cross-contamination of Escherichia coli O157:H7 is inhibited by electrolyzed water combined with salt under dynamic conditions of increasing organic matter, Food Microbiol. 46 (2015) 471-478. |
[37] | J. Jeong, J. Y. Kim, M. Cho, W. Choi, J. Yoon, Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode, Chemosphere 67 (2007) 652-659. |
[38] | Y. Delaedt, A. Daneels, P. Declerck, J. Behets, J. Ryckeboer, E. Peters, F. Ollevier, The impact of electrochemical disinfection on Escherichia coli and Legionella pneumophila in tap water, Microbiol. Res. 163 (2008) 192-199. |
[39] | K. Shang, Z. Qiao, B. Sun, X. Fan, S. Ai, An efficient electrochemical disinfection of E. coli and S. aureus in drinking water using ferrocene–PAMAM–multiwalled carbon nanotubes–chitosan nanocomposite modified pyrolytic graphite electrode, J Solid State Electrochem. 17 (2013) 1685-1691. |
[40] | D. Ghernaout, Microorganisms’ electrochemical disinfection phenomena, EC Microbiol. 9 (2017) 160-169. |
[41] | A. Issa-Zacharia, Y. Kamitani, A. Tiisekwa, K. Morita, K. Iwasaki, In vitro inactivation of Escherichia coli, Staphylococcus aureus and Salmonella spp. using slightly acidic electrolyzed water, J. Biosci. Bioeng. 110 (2010) 308-313. |
[42] | J. Jeong, C. Kim, J. Yoon, The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes, Water Res. 43 (2009) 895-901. |
[43] | C. A. Martínez-Huitle, E. Brillas, Minireview - electrochemical alternatives for drinking water disinfection, Angew. Chem. Int. Ed. 47 (2008) 1998-2005. |
[44] | M. Mascia, S. Monasterio, A. Vacca, S. Palmas, Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes, J. Hazard. Mater. 319 (2016) 111-120. |
[45] | M. Rajab, C. Heim, T. Letzel, J. E. Drewes, B. Helmreich, Electrochemical disinfection using boron-doped diamond electrode – The synergetic effects of in situ ozone and free chlorine generation, Chemosphere 121 (2015) 47-53. |
[46] | W. T. Mook, M. K. Aroua, G. Issabayeva, Prospective applications of renewable energy based electrochemical systems in wastewater treatment: A review, Renew. Sustain. Energy Rev. 38 (2014) 36-46. |
[47] | C. Bruguera-Casamada, I. Sirés, M. J. Prieto, E. Brillas, R. M. Araujo, The ability of electrochemical oxidation with a BDD anode to inactivate Gram-negative and Gram-positive bacteria in low conductivity sulfate medium, Chemosphere 163 (2016) 516-524. |
[48] | E. A. Vik, D. A. Carlson, A. S. Eikum, E. T. Gjessing, Electrocoagulation of potable water, Water Res. 18 (1984) 1355-1360. |
[49] | S. Cotillas, J. Llanos, P. Cañizares, S. Mateo, M. A. Rodrigo, Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation, Water Res. 47 (2013) 1741-1750. |
[50] | D. T. Moussa, M. H. El-Naas, M. Nasser, M. J. Al-Marri, A comprehensive review of electrocoagulation for water treatment: Potentials and challenges, J. Environ. Manag. 186 (2017) 24-41. |
[51] | K. Rajeshwar, J. G. Ibanez, G. M. Swain, Electrochemistry and the environment, J. Appl. Electrochem. 24 (1994) 1077-1091. |
[52] | D. Ghernaout, The Holy Koran Revelation: Iron is a “sent down” metal, Am. J. Environ. Prot. 6 (2017) 101-104. |
[53] | D. Ghernaout, S. Irki, A. Boucherit, Removal of Cu 2+ and Cd2+, and humic acid and phenol by electrocoagulation using iron electrodes, Desalin. Water Treat. 52 (2014) 3256-3270. |
[54] | D. Ghernaout, M. W. Naceur, Ferrate (VI): In situ generation and water treatment – A review, Desalin. Water Treat. 30 (2011) 319-332. |
[55] | D. Ghernaout, A. Mariche, B. Ghernaout, A. Kellil, Electromagnetic treatment-bi-electrocoagulation of humic acid in continuous mode using response surface method for its optimization and application on two surface waters, Desalin. Water Treat. 22 (2010) 311-329. |
[56] | S. Garcia-Segura, M. M. S. G. Eiband, J. Vieira de Melo, C. A. Martínez-Huitle, Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies, J. Electroanalyt. Chem. 801 (2017) 267-299. |
[57] | D. Ghernaout, Electrocoagulation process: Achievements and green perspectives, Colloid Surface Sci. 3 (2018) 1-5. |
[58] | D. Ghernaout, Entropy in the Brownian motion (BM) and coagulation background, Colloid Surface Sci. 2 (2017) 143-161. |
[59] | D. Ghernaout, M. Aichouni, A. Alghamdi, Applying Big Data (BD) in water treatment industry: A new era of advance, Int. J. Adv. Appl. Sci. 5 (2018) 89-97. |
[60] | D. Ghernaout, Increasing trends towards drinking water reclamation from treated wastewater, World J. Appl. Chem. 3 (2018) 1-9. |
[61] | S. Irki, D. Ghernaout, M. W. Naceur, A. Alghamdi, M. Aichouni, Decolorizing Methyl Orange by Fe-Electrocoagulation Process – A Mechanistic Insight, Inter. J. Environ. Chem. 2 (2018) 18-28. |
[62] | C. An, G. Huang, Y. Yao, S. Zhao, Emerging usage of electrocoagulation technology for oil removal from wastewater: A review, Sci. Total Environ. 579 (2017) 537-556. |
[63] | K. L. Dubrawski, M. Mohseni, In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal, Water Res. 47 (2013) 5371-5380. |
[64] | S. Irki, D. Ghernaout, M. W. Naceur, A. Alghamdi, M. Aichouni, Decolorization of methyl orange (MO) by electrocoagulation (EC) using iron electrodes under a magnetic field (MF). II. Effect of connection mode, World J. Appl. Chem. 3 (2018) 56-64. |
[65] | S. Irki, D. Ghernaout, M. W. Naceur, Decolourization of methyl orange (MO) by electrocoagulation (EC) using iron electrodes under a magnetic field (MF), Desalin. Water Treat. 79 (2017) 368-377. |
[66] | S. Barışçı, O. Turkay, Domestic greywater treatment by electrocoagulation using hybrid electrode combinations, J. Water Process Eng. 10 (2016) 56-66. |
[67] | S. Vasudevan, M. A. Oturan, Electrochemistry and water Pollution (Ch. 2), E. Lichtfouse et al. (Eds.), Green materials for energy, products and depollution, Environmental chemistry for a sustainable World 3, Springer ScienceCBusiness Media, Dordrecht, 2013. |
[68] | J. Llanos, S. Cotillas, P. Cañizares, M. A. Rodrigo, Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process, Water Res. 53 (2014) 329-338. |
[69] | I. Linares Hernández, C. B. Díaz, M. V. Cerecero, P. T. A. Sánchez, M. C. Juárez, V. L. Lugo, Soft drink wastewater treatment by electrocoagulation–electrooxidation processes, Environ. Technol. 38 (2017) 433-442. |
[70] | D. Ghernaout, B. Ghernaout, A. Boucherit, M. W. Naceur, A. Khelifa, A. Kellil, Study on mechanism of electrocoagulation with iron electrodes in idealised conditions and electrocoagulation of humic acids solution in batch using aluminium electrodes, Desalin. Water Treat. 8 (2009) 91-99. |
[71] | A. Saiba, S. Kourdali, B. Ghernaout, D. Ghernaout, In Desalination, from 1987 to 2009, the birth of a new seawater pretreatment process: Electrocoagulation-an overview, Desalin. Water Treat. 16 (2010) 201-217. |
[72] | D. Belhout, D. Ghernaout, S. Djezzar-Douakh, A. Kellil, Electrocoagulation of Ghrib dam’s water (Algeria) in batch using iron electrodes, Desalin. Water Treat. 16 (2010) 1-9. |
[73] | D. Ghernaout, A. I. Al-Ghonamy, S. Irki, A. Grini, M. W. Naceur, N. Ait Messaoudene, M. Aichouni, Decolourization of bromophenol blue by electrocoagulation process, Trends Chem. Eng. 15 (2014) 29-39. |
[74] | D. Ghernaout, A. I. Al-Ghonamy, M. W. Naceur, N. Ait Messaoudene, M. Aichouni, Influence of operating parameters on electrocoagulation of C. I. disperse yellow 3, J. Electrochem. Sci. Eng. 4 (2014) 271-283. |
[75] | D. Ghernaout, B. Ghernaout, A. Kellil, Natural organic matter removal and enhanced coagulation as a link between coagulation and electrocoagulation, Desalin. Water Treat. 2 (2009) 209-228. |
[76] | D. Ghernaout, B. Ghernaout, A. Boucherit, Effect of pH on electrocoagulation of bentonite suspensions in batch using iron electrodes, J. Disper. Sci. Technol. 29 (2008) 1272-1275. |
[77] | D. Ghernaout, B. Ghernaout, A. Saiba, A. Boucherit, A. Kellil, Removal of humic acids by continuous electromagnetic treatment followed by electrocoagulation in batch using aluminium electrodes, Desalination 239 (2009) 295-308. |
[78] | E. Gengec, Treatment of highly toxic cardboard plant wastewater by a combination of electrocoagulation and electrooxidation processes, Ecotoxicol. Environ. Safety 145 (2017) 184-192. |
[79] | B. Ghernaout, D. Ghernaout, A. Saiba, Algae and cyanotoxins removal by coagulation/flocculation: A review, Desalin. Water Treat. 20 (2010) 133-143. |
[80] | D. Ghernaout, A. I. Al-Ghonamy, M. W. Naceur, A. Boucherit, N. A. Messaoudene, M. Aichouni, A. A. Mahjoubi, N. A. Elboughdiri, Controlling coagulation process: From Zeta potential to streaming potential, Am. J. Environ. Prot. 4 (2015) 16-27. |
[81] | D. Ghernaout, A. I. Al-Ghonamy, A. Boucherit, B. Ghernaout, M. W. Naceur, N. Ait Messaoudene, M. Aichouni, A. A. Mahjoubi, N. A. Elboughdiri, Brownian motion and coagulation process, Am. J. Environ. Prot. 4 (2015) 1-15. |
[82] | D. Ghernaout, A. I. Al-Ghonamy, N. Ait Messaoudene, M. Aichouni, M. W. Naceur, F. Z. Benchelighem, A. Boucherit, Electrocoagulation of Direct Brown 2 (DB) and BF Cibacete Blue (CB) using aluminum electrodes, Sep. Sci. Technol. 50 (2015) 1413-1420. |
[83] | S. Djezzar, D. Ghernaout, H. Cherifi, A. Alghamdi, B. Ghernaout, M. Aichouni, Conventional, enhanced, and alkaline coagulation for hard Ghrib Dam (Algeria) water, World J. Appl. Chem. 3 (2018) 41-55. |
[84] | D. Ghernaout, C. Laribi, A. Alghamdi, B. Ghernaout, N. Ait Messaoudene, M. Aichouni, Decolorization of BF Cibacete Blue (CB) and Red Solophenyle 3BL (RS) using aluminum sulfate and ferric chloride, World J. Appl. Chem. 3 (2018) 32-40. |
[85] | H. Moreno, J. R. Parga, A. J. Gomes, M. Rodríguez, Electrocoagulation treatment of municipal wastewater in Torreon Mexico, Desalin. Water Treat. 51 (2013) 2710-2717. |
[86] | J. Llanos, S. Cotillas, P. Cañizares, M. A. Rodrigo, Electrocoagulation as a key technique in the integrated urban water cycle – A case study in the centre of Spain, Urban Water J. 14 (2017) 650-654. |
[87] | D. Ghernaout, B. Ghernaout, On the controversial effect of sodium sulphate as supporting electrolyte on electrocoagulation process: A review, Desalin. Water Treat. 27 (2011) 243-254. |
[88] | D. Ghernaout, The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation - A review, J. King Saud Univ. – Sci. 26 (2014) 169-180. |
[89] | S. Chellam, M. A. Sari, Aluminum electrocoagulation as pretreatment during microfiltrationof surface water containing NOM: A review of fouling, NOM, DBP, and virus control, J. Hazard. Mater. 304 (2016) 490-501. |
[90] | C. Delaire, C. M. van Genuchten, S. E. Amrose, A. J. Gadgil, Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe (III) precipitates, Water Res. 103 (2016) 74-82. |
[91] | D. Ghernaout, B. Ghernaout, Sweep flocculation as a second form of charge neutralisation – A review, Desalin. Water Treat. 44 (2012) 15-28. |
[92] | Ż. Król, A. Jarmoluk, The effects of using a direct electric current on the chemical properties of gelatine gels and bacterial growth, J. Food Eng. 170 (2016) 1-7. |
[93] | L. F. Machado, R. N. Pereira, R. C. Martins, J. A. Teixeira, A. A. Vicente, Moderate electric fields can inactivate Escherichia coli at room temperature, J. Food Eng. 96 (2010) 520-527. |
[94] | A. C. Ndjomgoue-Yossa, C. P. Nanseu-Njiki, I. M. Kengne, E. Ngameni, Effect of electrode material and supporting electrolyte on the treatment of water containing Escherichia coli by electrocoagulation, Int. J. Environ. Sci. Technol. 12 (2015) 2103-2110. |
[95] | C. Delaire, C. M. van Genuchten, K. L. Nelson, S. E. Amrose, A. J. Gadgil, Escherichia coli attenuation by Fe electrocoagulation in synthetic Bengal Groundwater: Effect of pH and natural organic matter, Environ. Sci. Technol. 49 (2015) 9945-9953. |
[96] | D. Borrok, B. F. Turner, J. B. Fein, A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings, Am. J. Sci. 305 (2005) 826-853. |
[97] | B. T. Ngwenya, I. W. Sutherland, L. Kennedy, Comparison of the acid-base behaviour and metal adsorption characteristics of a gram-negative bacterium with other strains, Appl. Geochem. 18 (2003) 527-538. |
[98] | M. B. McBride, K. H. Kung, Adsorption of phenol and substituted phenols by iron oxides, Environ. Toxicol. Chem. 10 (1991) 441-448. |
[99] | K. Norén, J. S. Loring, P. Persson, Adsorption of alpha amino acids at the water/goethite interface, J. Colloid Interface Sci. 319 (2008) 416-428. |
[100] | Y. Arai, D. L. Sparks, ATR–FTIR Spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface, J. Colloid Interface Sci. 241 (2001) 317-326. |
[101] | A. W. Chassé, T. Ohno, S. R. Higgins, A. Amirbahman, N. Yildirim, T. B. Parr, Chemical force spectroscopy evidence supporting the layer-by-layer model of organic matter binding to iron (oxy)hydroxide mineral surfaces, Environ. Sci. Technol. 49 (2015) 9733-9741. |
[102] | D. Ghernaout, C. Benblidia, F. Khemici, Microalgae removal from Ghrib Dam (Ain Defla, Algeria) water by electroflotation using stainless steel electrodes, Desalin. Water Treat. 54 (2015) 3328-3337. |
[103] | D. Ghernaout, M. W. Naceur, B. Ghernaout, A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflotation, Desalin. Water Treat. 28 (2011) 287-320. |
[104] | N. Boudjema, N. Drouiche, N. Abdi, H. Grib, H. Lounici, A. Pauss, N. Mameri, Treatment of Oued El Harrach river water by electrocoagulation noting the effect of the electric field on microorganisms, J. Taiwan Inst. Chem. Eng. 45 (2014) 1564-1570. |
[105] | E. Anfruns-Estrada, C. Bruguera-Casamada, H. Salvadó, E. Brillas, I. Sirés, R. M. Araujo, Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments, Water Res. 126 (2017) 450-459. |
APA Style
Djamel Ghernaout, Mabrouk Touahmia, Mohamed Aichouni. (2019). Disinfecting Water: Electrocoagulation as an Efficient Process. Applied Engineering, 3(1), 1-12. https://doi.org/10.11648/j.ae.20190301.11
ACS Style
Djamel Ghernaout; Mabrouk Touahmia; Mohamed Aichouni. Disinfecting Water: Electrocoagulation as an Efficient Process. Appl. Eng. 2019, 3(1), 1-12. doi: 10.11648/j.ae.20190301.11
@article{10.11648/j.ae.20190301.11, author = {Djamel Ghernaout and Mabrouk Touahmia and Mohamed Aichouni}, title = {Disinfecting Water: Electrocoagulation as an Efficient Process}, journal = {Applied Engineering}, volume = {3}, number = {1}, pages = {1-12}, doi = {10.11648/j.ae.20190301.11}, url = {https://doi.org/10.11648/j.ae.20190301.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ae.20190301.11}, abstract = {Electrocoagulation (EC) process has been largely found efficient in terms of pathogens removal. This literature review focuses on describing the key killing microorganisms' pathway followed throughout the EC technique. The pathogens removal route using EC is deeply assessed following the practical experimentation realized during these last years. Physical elimination and chemical deactivation pathways are suggested for bacteria reduction procedure throughout the EC method employing Fe/Al anodes: (1) entrapping pathogens in flocs, (2) destabilizing negatively charged microbes through sweep flocculation, and (3) demobilizing bacteria cell envelopes upon electrochemically formed reactive oxygen species or direct impact of the electric field. Finally, deepest investigation works on microbes’ removal through EC are more called to promote the industrial applications of this performant technology.}, year = {2019} }
TY - JOUR T1 - Disinfecting Water: Electrocoagulation as an Efficient Process AU - Djamel Ghernaout AU - Mabrouk Touahmia AU - Mohamed Aichouni Y1 - 2019/01/24 PY - 2019 N1 - https://doi.org/10.11648/j.ae.20190301.11 DO - 10.11648/j.ae.20190301.11 T2 - Applied Engineering JF - Applied Engineering JO - Applied Engineering SP - 1 EP - 12 PB - Science Publishing Group SN - 2994-7456 UR - https://doi.org/10.11648/j.ae.20190301.11 AB - Electrocoagulation (EC) process has been largely found efficient in terms of pathogens removal. This literature review focuses on describing the key killing microorganisms' pathway followed throughout the EC technique. The pathogens removal route using EC is deeply assessed following the practical experimentation realized during these last years. Physical elimination and chemical deactivation pathways are suggested for bacteria reduction procedure throughout the EC method employing Fe/Al anodes: (1) entrapping pathogens in flocs, (2) destabilizing negatively charged microbes through sweep flocculation, and (3) demobilizing bacteria cell envelopes upon electrochemically formed reactive oxygen species or direct impact of the electric field. Finally, deepest investigation works on microbes’ removal through EC are more called to promote the industrial applications of this performant technology. VL - 3 IS - 1 ER -