| Peer-Reviewed

Chemical Composition and Nutritional Value of the Most Widely Used Mushrooms Cultivated in Mekelle Tigray Ethiopia

Received: 1 August 2015     Accepted: 11 August 2015     Published: 29 August 2015
Views:       Downloads:
Abstract

The basic composition (The total protein, total carbohydrate, total lipid, crude fiber and ash content of each mushroom were studied on dry weight contents were determined in the cultivated mushrooms Agaricus bisporus/white, Agaricus bisporus/brown, Lentinula edodes, and Pleurotus ostreatus and they ranged from 28.38-49.2, 1.54-4.96, 13.2-29.02 and 7.01-17.92, respectively and this shows it has high content of protein and fat fiber and low fat and this good for as alternatives food stuff andtheseresults asserve as the basis of further scientific study into various ways of enhancing the livelihood of particular areas of northern Mekelle through increased mushroom domestication as well as assessing the possible bioactivity of mushrooms against foodcertain human diseases.

Published in American Journal of Applied Chemistry (Volume 3, Issue 5)
DOI 10.11648/j.ajac.20150305.12
Page(s) 164-167
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Mushrooms, Basic Composition, Moisture, Carbohydrates, Dietary Fiber, Fat, Ash, Nitrogen, Protein

References
[1] Agaricusbisporusharvested at different stages of maturity. Food Chem. 103, 1457-1464.Aida, F.M.N.A., Shuhaimi, M., Yazid, M., Maaruf, A.G. 2009. Mushroom as a potential source of prebiotics: a review. Trends Food Sci. Tech. 20, 567-575.
[2] AOAC, 1995. Official methods of analysis (16th Ed.). Arlington VA, USA: Association of Official Analytical Chemists.
[3] Barros, L., Baptista, P., Ferreira, I.C.F.R. 2007. Effect of Lactariuspiperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem. Toxicol. 45, 1731-1737.
[4] Barros, L., Correia, D.M., Ferreira, I.C.F.R., Baptista, P., Santos-Buelga, C. 2008a. Optimization of the determination of tocopherols in Agaricus sp. edible mushrooms by a normal phase liquid chromatographic method. Food Chem. 110, 1046-1050.
[5] Barros, L., Cruz, T., Baptista, P., Estevinho, L.M., Ferreira, I.C.F.R. 2008b. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem. Toxicology. 46, 2742-2747.
[6] Beluhan, S., Ranogajec, A. 2011.Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem. 124, 1076-1082.
[7] Bonatti, M., Karnopp, P., Soares, H.M., Furlan, S.A., 2004. Evaluation of PleurotusostreatusandPleurotussajor-cajunutritional characteristics when cultivated indifferent lignocelluloses wastes. Food Chem. 88, 425-428.
[8] Braaksma, A., Schaap, D.J. 1996. Protein analysis of the common mushroom Agaricusbisporus. Postharvest Biol. Tech. 7, 119-127.
[9] Çağlrirmak,N.2007. Thenutrientsofexoticmushrooms(LentinulaedodesandChang, S.-T., Miles, P.G. 2004. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, 2nd ed.; Boca Raton, FL, USA: CRC Press.
[10] Ferreira, I.C.F.R., Barros, L., Abreu, R.M.V. 2009. Antioxidants in wild mushrooms. Cur. Med. Chem. 16, 1543-1560.
[11] Grangeia, C.,Heleno, S.A., Barros, L., Martins, A., Ferreira, I.C.F.R. 2011. Effects of trophismon nutritional and nutraceutical potential of wild edible mushrooms. Food Res. Int. 44, 1029-1035.
[12] Guillamón, E., García-Lafuente, A., Lozano, M., D´Arrigo, M., Rostagno, M.A., Villares, A., Martínez, J.A. 2010. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia 81, 715-723.
[13] Heleno, S.A., Barros, L., Sousa, M.J., Martins, A., Ferreira, I.C.F.R. 2009. Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high performance liquid chromatography. Microchem. J. 93, 195-199.
[14] Heleno, S.A., Barros, L., Sousa, M.J., Martins, A., Ferreira, I.C.F.R. 2010. Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chem. 119, 1443-1450.
[15] Kalač, P. 2009. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 113, 9–16.
[16] León-Guzmán, M.F., Silva, I., López, M.G. 1997. Proximate chemical, composition, free amino acid contents, and free fatty acid contents of some wild edible mushrooms from Querétaro, México. J. Agric. Food Chem. 45, 4329-4332.
[17] Longvah, T., Deosthale, Y.G. Compositional and nutritional studies on edible wild mushroom from northeast India. Food Chem. 63, 331-334.
[18] Manzi, P., Aguzzi, A., Pizzoferrato, L. 2001. Nutritional value of mushrooms widely consumed in Italy. Food Chem. 73, 321-325.
[19] Manzi, P., Gambelli, L., Marconi, S., Vivanti, V., Pizzoferrato, L. 1999. Nutrients in edible mushrooms: An interspecies comparative study. Food Chem. 65, 477-82.
[20] Manzi, P., Marconi, S., Guzzi, A., Pizzoferrato L. 2004. Commercial mushrooms: nutritional quality and effect of cooking. Food Chem. 84, 201-206.
[21] Mattila, P., Könkö, K., Eurola,M., Pihlava,J.-M., Astola, J., Vahteristo, L.,Hietaniemi, V., Kumpulainen, J.,Valtonen, M., Piironen, V. 2001. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 49, 2343-2348.
[22] Mattila, P., Salo-Väänänen, P., Könkö, K., Aro, H., Jalava, T.2002. Basic composition and amino acid contents of mushrooms cultivated in Finland. J. Agric. Food Chem. 50, 6419-6422.
[23] Mdachi, S.J.M., Nkunya, M.H.H., Nyigo, V.A., Urasa, I.T. 2004. Amino acid composition of some Tanzanian wild mushrooms. Food Chem. 86, 179–182.
[24] Ouzouni, P.K., Petridis, D., Koller, W.-D., Riganakos, K.A. 2009. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem. 115, 1575–1580.
[25] Pedneault, K., Angers, P., Avis, T.J., Gosselin, A. 2007. Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var. “citrino-pileatus” grown at different temperatures. Mycol. Research. 111, 1228-1234.
[26] Pereira, E., Barros, L., Martins, A., Ferreira. I.C.F.R. 2012. Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chem. 130, 394-403.
[27] Pleurotusostreatuscultivated on spent beer grain. Biores. Technol. 78, 293-300.Yilmaz, N.,ş, Solmaz, M.2006M. Fatty., Türkekul, acidcompositionI., Elmastain
[28] Pleurotusspecies) and an estimated approach to the volatile compounds. FoodChem. 105, 1188-1194.
[29] Ribeiro, B., Pinho, P.G., Andrade, P.B., Baptista, P., &Valentão, P. (2009). Fatty acid composition of wild edible mushrooms species: A comparative study. Microchem. J. 93, 29-35.some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chem. 99, 168-174.
[30] Ashagrie Z. Woldegiorgis, Dawit Abate, Gulelat D. Haki, Gregory R. Ziegler. Proximate and Amino Acid Composition of Wild and Cultivated Edible Mushrooms Collected from Ethiopia Journal of Food and Nutrition SciencesVol. 3, No. 2, 2015, pp. 47-54. doi: 10.11648/j.jfns.20150302.14
[31] Masumi Kamiyama, Takayuki Shibamoto, Masahiro Horiuchi, Katsumi Umano, Kazuo Kondo, Yuzuru Otsuka, Antioxidant/Anti-Inflammatory Activities and Chemical Composition of Extracts from the Mushroom Trametes Versicolor, International Journal of Nutrition and Food Sciences. Vol. 2, No. 2, 2013, pp. 85-91. doi: 10.11648/j.ijnfs.20130202.19
Cite This Article
  • APA Style

    Teklit Gebregiorgis Amabye, Afework Mulugeta Bezabh. (2015). Chemical Composition and Nutritional Value of the Most Widely Used Mushrooms Cultivated in Mekelle Tigray Ethiopia. American Journal of Applied Chemistry, 3(5), 164-167. https://doi.org/10.11648/j.ajac.20150305.12

    Copy | Download

    ACS Style

    Teklit Gebregiorgis Amabye; Afework Mulugeta Bezabh. Chemical Composition and Nutritional Value of the Most Widely Used Mushrooms Cultivated in Mekelle Tigray Ethiopia. Am. J. Appl. Chem. 2015, 3(5), 164-167. doi: 10.11648/j.ajac.20150305.12

    Copy | Download

    AMA Style

    Teklit Gebregiorgis Amabye, Afework Mulugeta Bezabh. Chemical Composition and Nutritional Value of the Most Widely Used Mushrooms Cultivated in Mekelle Tigray Ethiopia. Am J Appl Chem. 2015;3(5):164-167. doi: 10.11648/j.ajac.20150305.12

    Copy | Download

  • @article{10.11648/j.ajac.20150305.12,
      author = {Teklit Gebregiorgis Amabye and Afework Mulugeta Bezabh},
      title = {Chemical Composition and Nutritional Value of the Most Widely Used Mushrooms Cultivated in Mekelle Tigray Ethiopia},
      journal = {American Journal of Applied Chemistry},
      volume = {3},
      number = {5},
      pages = {164-167},
      doi = {10.11648/j.ajac.20150305.12},
      url = {https://doi.org/10.11648/j.ajac.20150305.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20150305.12},
      abstract = {The basic composition (The total protein, total carbohydrate, total lipid, crude fiber and ash content of each mushroom were studied on dry weight contents were determined in the cultivated mushrooms Agaricus bisporus/white, Agaricus bisporus/brown, Lentinula edodes, and Pleurotus ostreatus and they ranged from 28.38-49.2, 1.54-4.96, 13.2-29.02 and 7.01-17.92, respectively and this shows it has high content of protein and fat fiber and low fat and this good for as alternatives food stuff andtheseresults asserve as the basis of further scientific study into various ways of enhancing the livelihood of particular areas of northern Mekelle through increased mushroom domestication as well as assessing the possible bioactivity of mushrooms against foodcertain human diseases.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Chemical Composition and Nutritional Value of the Most Widely Used Mushrooms Cultivated in Mekelle Tigray Ethiopia
    AU  - Teklit Gebregiorgis Amabye
    AU  - Afework Mulugeta Bezabh
    Y1  - 2015/08/29
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajac.20150305.12
    DO  - 10.11648/j.ajac.20150305.12
    T2  - American Journal of Applied Chemistry
    JF  - American Journal of Applied Chemistry
    JO  - American Journal of Applied Chemistry
    SP  - 164
    EP  - 167
    PB  - Science Publishing Group
    SN  - 2330-8745
    UR  - https://doi.org/10.11648/j.ajac.20150305.12
    AB  - The basic composition (The total protein, total carbohydrate, total lipid, crude fiber and ash content of each mushroom were studied on dry weight contents were determined in the cultivated mushrooms Agaricus bisporus/white, Agaricus bisporus/brown, Lentinula edodes, and Pleurotus ostreatus and they ranged from 28.38-49.2, 1.54-4.96, 13.2-29.02 and 7.01-17.92, respectively and this shows it has high content of protein and fat fiber and low fat and this good for as alternatives food stuff andtheseresults asserve as the basis of further scientific study into various ways of enhancing the livelihood of particular areas of northern Mekelle through increased mushroom domestication as well as assessing the possible bioactivity of mushrooms against foodcertain human diseases.
    VL  - 3
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Chemistry, Mekelle University, Mekelle Tigray, Ethiopia

  • Department of Public Health, Mekelle University, Mekelle, Tigray, Ethiopia

  • Sections