The geometrical structure and the vibrational spectra of dimer Rb2Cl2, trimer Rb3Cl3, tetramer Rb4Cl4 molecules and heptaatomic Rb4Cl3+, Rb3Cl4– ions were studied. The cluster molecules and ions had been detected in equilibrium vapour over rubidium chloride previously. The quantum chemical calculations by DFT with hybrid functional B3P86 and MP2 methods were performed. The effective core potential with Def2–TZVP (6s4p3d) basis set for rubidium atom and full electron aug–cc–pVTZ (6s5p3d2f) basis set for chlorine atom were used. The equilibrium configuration was confirmed to be rhomb of symmetry D2h for dimer Rb2Cl2, distorted cube (Td) for tetramer Rb4Cl4 and polyhedral (C3v) for heptaatomic ions Rb4Cl3+ and Rb3Cl4–. For the trimer molecule Rb3Cl3 two isomers have been revealed: hexagonal (D3h) and butterfly-shaped (C2v), the latter has lower energy and is proved to be predominant in equilibrium vapour in a broad temperature range.
Published in | American Journal of Applied Chemistry (Volume 3, Issue 6) |
DOI | 10.11648/j.ajac.20150306.18 |
Page(s) | 224-231 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Ionic and Molecular Clusters, Rubidium Chloride, Geometrical Structure, Vibrational Spectra, DFT, MP2, Isomers
[1] | Cramer, C. J. (2004), Essentials of computational chemistry: theories and models. John Wiley & Sons Ltd, 2nd Ed, USA. |
[2] | Khanna, S. and Jena P., Assembling crystals from clusters. Phys. Rev. lett. 1993. 71(1): p. 208. |
[3] | Khanna, S. and Jena P., Atomic clusters: Building blocks for a class of solids. Phys. Rev. B. 1995. 51(19): p. 13705. |
[4] | Sarkas, H. W., Kidder, L. H., and Bowen, K. H., Photoelectron spectroscopy of color centers in negatively charged cesium iodide nanocrystals. J. Chem. Phys. 1995. 102(1): p. 57–66. |
[5] | Alexandrova, A. N., Boldyrev, A. I., Fu, Y. J., Yang, X., Wang, X. B., and Wang, L. S., Structure of the NaxClx+1 (x= 1–4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. J. Chem. Phys. 2004. 121(12): p. 5709–5719. |
[6] | Castleman, A. and Bowen K., Clusters: Structure, energetics, and dynamics of intermediate states of matter. J. Phys. Chem. 1996. 100(31): p. 12911–12944. |
[7] | Castleman Jr, A. and Khanna S., Clusters, Superatoms, and Building Blocks of New Materials. J. Phys. Chem. 2009. 113(7): p. 2664–2675. |
[8] | Pogrebnoi, A. M., Pogrebnaya, T. P., Kudin, L. S., and Tuyizere, S., Structure and thermodynamic properties of positive and negative cluster ions in saturated vapour over barium dichloride. Mol. Phys. 2013. 111(21): p. 3234–3245. |
[9] | Hishamunda, J., Girabawe, C., Pogrebnaya, T., and Pogrebnoi, A., Theoretical study of properties of Cs2Cl+, CsCl2nd, Cs3Cl2+, and Cs2Cl3– ions: Effect of Basis set and Computation Method. Rwanda Journal. 2012. 25(1): p. 66–85. |
[10] | Fernandez-Lima, F. A., Nascimento, M. A. C., and da Silveira E. F., Alkali halide clusters produced by fast ion impact. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012. 273: p. 102–104. |
[11] | Rao, B., Khanna S., and Jena P., Designing new materials using atomic clusters. J. Clust. Sc. 1999. 10(4): p. 477–491. |
[12] | Chupka, W. A., Dissociation energies of some gaseous alkali halide complex ions and the hydrated ion K(H2O) +. J. Chem. Phys. 1959. 30(2): p. 458–465. |
[13] | Huh, S. and Lee G., Mass spectrometric study of negative, positive, and mixed KI cluster ions by using fast Xe atom bombardment. J. Kor. Phys. Soc. 2001. 38(2): p. 107–110. |
[14] | Honig, A., Stitch, M., and Mandel, M., Microwave Spectra of CsF, CsCl, and CsBr. Phys. Rev. 1953. 92(4), 901. |
[15] | Honig, A., Mandel, M., Stitch, M., and Townes, C., Microwave spectra of the alkali halides. Phys. Rev. 1954. 96(3), 629. |
[16] | Fabricand, B. P., Carlson, R., Lee, C. A., and Rabi, I., Molecular Beam Investigation of Rotational Transitions. II. The Rotational Levels of KBr and Their Hyperfine Structure. Phys. Rev. 1953. 91(6), 1403. |
[17] | Aguado, A., An ab initio study of the structures and relative stabilities of doubly charged [(NaCl) m (Na) 2]2+ cluster ions. J. Phys. Chem. B. 2001. 105(14): p. 2761–2765. |
[18] | Costa, R., Pogrebnaya T., and Pogrebnoi A., Structure and vibrational spectra of cluster ions over rubidium iodide by computational chemistry. Pan African Conference on Computing and Telecommunications in Science (PACT). IEEE. 2014. PACTAT01114: p. 5255; doi: 10.1109/SCAT.2014.7055136. |
[19] | Mwanga, S. F., Pogrebnaya T. P., and Pogrebnoi A. M., Structure and properties of molecular and ionic clusters in vapour over caesium fluoride. Mol. Phys. 2015: p. 1–16. |
[20] | Pogrebnaya, T. P., Hishamunda, J. B., Girabawe, C., and Pogrebnoi, A. M., Theoretical study of structure, vibration spectra and thermodynamic properties of cluster ions in vapors over potassium, rubidium and cesium chlorides Chemistry for Sustainable Development. 2012, Springer. p. 353–366. |
[21] | Abubakari, I., Pogrebnaya, T., Pogrebnoi. A., Molecular and Ionic Clusters of Rubidium Fluoride: Theoretical Study of Structure and Vibrational Spectra. Inter. J. Comp. Theor. Chem. 2015. 3(5). p. 34-44. doi: 10.11648/j.ijctc.20150305.11 |
[22] | Motalov, V., Pogrebnoi, A., and Kudin, L., Molecular and Ionic Associates in Vapours of Rubidium Chloride. Russ. J. Phys. Chem. (Zhurnal Fizicheskoi Khimii), 2001. 75. p. 1547-1552. |
[23] | Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): p. 5648–5652. |
[24] | Perdew, J. P. and Zunger A., Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 1981. 23(10): p. 5048. |
[25] | Perdew, J., Phys. Rev. B. 1986, 33, 8822–8824; b) Perdew, J. P., Phys. Rev. B. 1986. 34: p. 7406–7406. |
[26] | Perdew, J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B. 1986. 33(12): p. 8822. |
[27] | Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., Montgomery, J. A., General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993. 14: p. 1347-1363; doi:10.1002/jcc.540141112. |
[28] | Granovsky, A. A., Firefly version 8.1.0, www http://classic.chem.msu.su/gran/firefly/index.html |
[29] | Zhurko G. A., Zhurko D. A., Chemcraft Version 1.7 (build 132). HTML: www.chemcraftprog.com. |
[30] | Bode, B. M., and Gordon, M. S., MacMolPlt version 7.4.2. J. Mol. Graphics and Modeling, 1998. 16: p. 133‒138. Available: http://www.scl.ameslab.gov/MacMolPlt/. |
[31] | Leininger, T., Nicklass, A., Küchle, W., Stoll, H., Dolg, M., and Bergner, A., The accuracy of the pseudopotential approximation: Non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X= K, Rb, Cs). Chem. Phys. Lett. 1996. 255(4): p. 274–280. |
[32] | EMSL basis set exchange website: https://bse.pnl.gov/bse/portal |
[33] | Kendall, R. A., Dunning Jr, T. H., and Harrison, R. J., Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992. 96(9): p. 6796–6806. |
[34] | Feller, D., The role of databases in support of computational chemistry calculations. J. Comp. Chem. 1996. 17(13): p. 1571–1586. |
[35] | Schuchardt, K. L., Didier, B. T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., and Windus, T. L., Basis set exchange: a community database for computational sciences. J. Chem. Info. Mod. 2007. 47(3): p. 1045–1052. |
[36] | Tokarev, K. L., "OpenThermo", v.1.0 Beta 1 (C) ed. http://openthermo.software.informer.com/, 2007–2009. |
[37] | Krasnov, K. S., Philippenko, N. V., Bobkova, V. A., Lebedeva, N. L., Morozov, E. V., Ustinova, T. I., and Romanova, G. A., Molekulyarnye postoyannye neorganicheskikh soedineniy (Handbook Molecular constants of inorganic compounds). 1979. |
[38] | Rice, S. A., and Klemperer, W., Spectra of the alkali halides. II. The infrared spectra of the sodium and potassium halides, RbCl and CsCl. J. Chem. Phys., 1957, 27, p. 573–579. |
[39] | Clouser, P. L., and Gordy, W., Millimeter-wave molecular-beam spectroscopy: alkali chlorides. Phys. Rev., 1964, 134, 863. |
[40] | Hebert, A., Lovas, F., Melendres, C., Hollowell, C., Story Jr, T., and Street Jr, K., Dipole moments of some alkali halide molecules by the molecular beam electric resonance method. J. Chem. Phys. 1968. 48(6): p. 2824. |
[41] | Berkowitz, J., Photoionization mass spectrometry photoelectron spectroscopy of high temperature vapour. Adv. High Temp. Chem., 1971, 3, 123 |
[42] | Potts, A. W.; Williams, T. A.; Price, W. C., Photoelectron spectra and electronic structure of diatomic alkali halides. Proc. Roy. Soc. London A, 1974, 341, 147 |
[43] | Potts, A. W., and Price, W. C., Photoelectron studies of ionic materials using molecular beam techniques. Phys. Scr. 1977, 16, 191 |
[44] | Miller, T. M., Leopold, D. G., Murray, K. K., Lineberger, W. C., Electron Affinities of the Alkali Halides and the Structure of their Negative Ions. J. Chem. Phys., 1986, 85, 5, 2368; doi:10.1063/1.451091 |
[45] | Hargittai, M., Molecular structure of metal halides. Chem. Rev. 2000. 100(6): p. 2233–2302 |
[46] | L. V. Gurvich, V. S. Yungman, G. A. Bergman, I. V. Veitz, A. V. Gusarov, V. S. Iorish, V. Y. Leonidov, V. A. Medvedev, G. V. Belov, N. M. Aristova, L. N. Gorokhov, O. V. Dorofeeva, Y. S. Ezhov, M.E. Efimov, N. S. Krivosheya, I. I. Nazarenko, E. L. Osina, V. G. Ryabova, P. I. Tolmach, N. E. Chandamirova, E. A. Shenyavskaya, Thermodynamic Properties of individual Substances. Ivtanthermo for Windows Database on Thermodynamic Properties of Individual Substances and Thermodynamic Modeling Software. Version 3.0 (Glushko Thermocenter of RAS, Moscow, 1992–2000). |
APA Style
Ismail Abubakari, Tatiana Pogrebnaya, Alexander Pogrebnoi. (2015). Theoretical Study of Structure and Vibrational Spectra of Molecular and Ionic Clusters Existing in Vapour over Rubidium Chloride. American Journal of Applied Chemistry, 3(6), 224-231. https://doi.org/10.11648/j.ajac.20150306.18
ACS Style
Ismail Abubakari; Tatiana Pogrebnaya; Alexander Pogrebnoi. Theoretical Study of Structure and Vibrational Spectra of Molecular and Ionic Clusters Existing in Vapour over Rubidium Chloride. Am. J. Appl. Chem. 2015, 3(6), 224-231. doi: 10.11648/j.ajac.20150306.18
AMA Style
Ismail Abubakari, Tatiana Pogrebnaya, Alexander Pogrebnoi. Theoretical Study of Structure and Vibrational Spectra of Molecular and Ionic Clusters Existing in Vapour over Rubidium Chloride. Am J Appl Chem. 2015;3(6):224-231. doi: 10.11648/j.ajac.20150306.18
@article{10.11648/j.ajac.20150306.18, author = {Ismail Abubakari and Tatiana Pogrebnaya and Alexander Pogrebnoi}, title = {Theoretical Study of Structure and Vibrational Spectra of Molecular and Ionic Clusters Existing in Vapour over Rubidium Chloride}, journal = {American Journal of Applied Chemistry}, volume = {3}, number = {6}, pages = {224-231}, doi = {10.11648/j.ajac.20150306.18}, url = {https://doi.org/10.11648/j.ajac.20150306.18}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20150306.18}, abstract = {The geometrical structure and the vibrational spectra of dimer Rb2Cl2, trimer Rb3Cl3, tetramer Rb4Cl4 molecules and heptaatomic Rb4Cl3+, Rb3Cl4– ions were studied. The cluster molecules and ions had been detected in equilibrium vapour over rubidium chloride previously. The quantum chemical calculations by DFT with hybrid functional B3P86 and MP2 methods were performed. The effective core potential with Def2–TZVP (6s4p3d) basis set for rubidium atom and full electron aug–cc–pVTZ (6s5p3d2f) basis set for chlorine atom were used. The equilibrium configuration was confirmed to be rhomb of symmetry D2h for dimer Rb2Cl2, distorted cube (Td) for tetramer Rb4Cl4 and polyhedral (C3v) for heptaatomic ions Rb4Cl3+ and Rb3Cl4–. For the trimer molecule Rb3Cl3 two isomers have been revealed: hexagonal (D3h) and butterfly-shaped (C2v), the latter has lower energy and is proved to be predominant in equilibrium vapour in a broad temperature range.}, year = {2015} }
TY - JOUR T1 - Theoretical Study of Structure and Vibrational Spectra of Molecular and Ionic Clusters Existing in Vapour over Rubidium Chloride AU - Ismail Abubakari AU - Tatiana Pogrebnaya AU - Alexander Pogrebnoi Y1 - 2015/12/22 PY - 2015 N1 - https://doi.org/10.11648/j.ajac.20150306.18 DO - 10.11648/j.ajac.20150306.18 T2 - American Journal of Applied Chemistry JF - American Journal of Applied Chemistry JO - American Journal of Applied Chemistry SP - 224 EP - 231 PB - Science Publishing Group SN - 2330-8745 UR - https://doi.org/10.11648/j.ajac.20150306.18 AB - The geometrical structure and the vibrational spectra of dimer Rb2Cl2, trimer Rb3Cl3, tetramer Rb4Cl4 molecules and heptaatomic Rb4Cl3+, Rb3Cl4– ions were studied. The cluster molecules and ions had been detected in equilibrium vapour over rubidium chloride previously. The quantum chemical calculations by DFT with hybrid functional B3P86 and MP2 methods were performed. The effective core potential with Def2–TZVP (6s4p3d) basis set for rubidium atom and full electron aug–cc–pVTZ (6s5p3d2f) basis set for chlorine atom were used. The equilibrium configuration was confirmed to be rhomb of symmetry D2h for dimer Rb2Cl2, distorted cube (Td) for tetramer Rb4Cl4 and polyhedral (C3v) for heptaatomic ions Rb4Cl3+ and Rb3Cl4–. For the trimer molecule Rb3Cl3 two isomers have been revealed: hexagonal (D3h) and butterfly-shaped (C2v), the latter has lower energy and is proved to be predominant in equilibrium vapour in a broad temperature range. VL - 3 IS - 6 ER -