Betacarotenes molecules extractions using acetic acid (99% of purity) as solvent followed by distillated water neutralization or hexane solvent to get back betacarotenes. To obtain pure betacarotenes molecules, distillation step is necessary for the second process which use hexane solvent; however for the first process which use distillated water neutralization, decantation step is enough. The first process is energetically profitable. Unrefined palm oil which contains betacarotenes molecules with triglycerides and grease acids is used as model product for betacarotenes extraction. Both of the two processes have extraction rate more than 27% which increases proportionally with the weight of unrefined palm oil used for extraction.
Published in | American Journal of Applied Chemistry (Volume 4, Issue 2) |
DOI | 10.11648/j.ajac.20160402.15 |
Page(s) | 64-70 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Extraction, Betacarotenes, Acetic Acid, Hydrogen Bond, Process, Neutralization, Decantation
[1] | "USDA National Nutrient Database for Standard Reference, Release 21". Retrieved 2009-07-24. |
[2] | M. LAFFITTE, F. ROUQUEROL La réaction chimique Tome 1. Aspects structuraux et thermodynamiques, 1991, Eds. Masson p. 9. |
[3] | E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H., Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt. Pure Appl. Chem. 83, 1619 (2011). |
[4] | B. PAVLOV, A. TERENTIEV Chimie organique Third Edition, 1977, Eds Mir p. 527. |
[5] | Michel VINCENT, Laboratoire de biochimie et Ecologie des Invertébrés Marins, Ecole Pratique des Hautes Etudes, Centre D’Océanologie de Marseille, UA CNRS 41, Station marine d’Endoume, 13007 Marseille, France, «Rôles et transformations des pigments caroténoides dans les réseaux trophiques marins». |
[6] | Jones, R.E.; Templeton, D.H. (1958). "The crystal structure of acetic acid". Acta Crystallographica 11 (7): 484–487. |
[7] | Briggs, James M.; Toan B. Nguyen; William L. Jorgensen (1991). "Monte Carlo simulations of liquid acetic acid and methyl acetate with the OPLS potential functions". Journal of Physical Chemistry 95 (8): 3315–3322. |
[8] | Togeas, James B. (2005). "Acetic Acid Vapor: 2. A Statistical Mechanical Critique of Vapor Density Experiments". Journal of Physical Chemistry A 109 (24): 5438–5444. |
[9] | McMurry, John (2000). Organic Chemistry (5 ed.). Brooks/Cole. p. 818. |
[10] | M. LAFFITTE, F. ROUQUEROL La réaction chimique Tome 2. Aspects thermodynamiques (suites) et cinétiques, 1991, Eds. Masson pp. 28-29. |
[11] | Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London, 1965; Supplement, 1972. |
[12] | Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids in Aqueous Solution, Pergamon, Oxford, 1979. |
[13] | Albert, A., "Ionization Constants of Heterocyclic Substances", in Physical Methods in Heterocyclic Chemistry, Katritzky, A. R., Ed., Academic Press, New York, 1963. |
[14] | Sober, H. A., Ed., CRC Handbook of Biochemistry, CRC Press, Cleveland, Ohio, 1968. |
[15] | Perrin, D. D., Dempsey, B., and Serjeant, E. P., pKa Prediction for Organic Acids and Bases, Chapman & Hall, London, 1981. |
[16] | Dawson, R. M. C., Elliot, D. C., Elliot, W. H., and Jones, K. M., Data for Biochemical Research, Oxford Science Publications, Oxford, 1986. |
[17] | Steric Attraction: The Far Side, Ronald R. Sauers Rutgers, State University, New Brunswick, NJ 08903, J. Chem. Educ., 1996, 73 (2), p 114. |
[18] | Fiume, M. Z.; Cosmetic Ingredients Review Expert Panel (June 2003). "Final report on the safety assessment of triacetin". International Journal of Toxicology 22 (Suppl 2): 1–10. |
[19] | Hosea Cheung; Robin S. Tanke; G. Paul Torrence (2005), "Acetic Acid", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH. |
[20] | Paul. ARNAUD, Cours de chimie physique, 14rd éd., Eds. Dunod 1990, pp. 387-388. |
[21] | Stephen K. Lower, Acid-base equilibria and calculations, December 26, 1996, lower@sfu.ca. |
[22] | M. LAFFITTE, F. ROUQUEROL La réaction chimique Tome 2. Aspects thermodynamiques (suites) et cinétiques, 1991, Eds. Masson p. 20. |
[23] | Beta carotene molecule photo www.wikipedia.com |
[24] | Stargrove, Mitchell (2007-12-20)., Herb, nutrient, and drug interactions: clinical implications and therapeutic strategies (1 ed.). Mosby. |
[25] | Druesne-Pecollo, N; Latino-Martel, P; Norat, T; Barrandon, E; Bertrais, S; Galan, P; Hercberg, S (Jul 1, 2010). "Beta-carotene supplementation and cancer risk: a systematic review and metaanalysis of randomized controlled trials.". International Journal of Cancer. Journal International Du Cancer 127 (1): 172–84. |
[26] | Mathew MC, Ervin AM, Tao J, Davis RM; Ervin; Tao; Davis (2012). "Routine Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract". Cochrane Database Syst Rev 6: CD004567. |
[27] | P. Karrer, A. Helfenstein, H. Wehrli, A. Wettstein; Helfenstein; Wehrli; Wettstein (1930). "Pflanzenfarbstoffe XXV. Über die Konstitution des Lycopins und Carotins". Helvetica Chimica Acta 13 (5): 1084–1099. |
[28] | T. Treszczanowicz C,S and A.J. Treszczanowicz, Department of Supramolecular Chemistry, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland TTreszcz@ichf.edu.pl, T. Kasprzycka-Guttman Chemistry Department, Warsaw University, Warsaw, Poland, Solubility of Beta-Carotene in Binary Mixed Solvents. |
[29] | Rosemary Hoegger BÜCHI Labortechnik AG (1998) English, Version B (16 pages) “Distillation with a Rotary Evaporator” Order N° 97743. |
[30] | M. Barthel. Calcul des chaleurs de distillation. J. Phys. Radium, 1930, 1 (12), pp.411-415. |
APA Style
Andry Tahina Rabeharitsara, Phandry Nomena Ndjiva Rabearimihaja. (2016). New Processes to Extract Pure Betacarotenes Molecules Using Acetic Acid Solvent. American Journal of Applied Chemistry, 4(2), 64-70. https://doi.org/10.11648/j.ajac.20160402.15
ACS Style
Andry Tahina Rabeharitsara; Phandry Nomena Ndjiva Rabearimihaja. New Processes to Extract Pure Betacarotenes Molecules Using Acetic Acid Solvent. Am. J. Appl. Chem. 2016, 4(2), 64-70. doi: 10.11648/j.ajac.20160402.15
AMA Style
Andry Tahina Rabeharitsara, Phandry Nomena Ndjiva Rabearimihaja. New Processes to Extract Pure Betacarotenes Molecules Using Acetic Acid Solvent. Am J Appl Chem. 2016;4(2):64-70. doi: 10.11648/j.ajac.20160402.15
@article{10.11648/j.ajac.20160402.15, author = {Andry Tahina Rabeharitsara and Phandry Nomena Ndjiva Rabearimihaja}, title = {New Processes to Extract Pure Betacarotenes Molecules Using Acetic Acid Solvent}, journal = {American Journal of Applied Chemistry}, volume = {4}, number = {2}, pages = {64-70}, doi = {10.11648/j.ajac.20160402.15}, url = {https://doi.org/10.11648/j.ajac.20160402.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20160402.15}, abstract = {Betacarotenes molecules extractions using acetic acid (99% of purity) as solvent followed by distillated water neutralization or hexane solvent to get back betacarotenes. To obtain pure betacarotenes molecules, distillation step is necessary for the second process which use hexane solvent; however for the first process which use distillated water neutralization, decantation step is enough. The first process is energetically profitable. Unrefined palm oil which contains betacarotenes molecules with triglycerides and grease acids is used as model product for betacarotenes extraction. Both of the two processes have extraction rate more than 27% which increases proportionally with the weight of unrefined palm oil used for extraction.}, year = {2016} }
TY - JOUR T1 - New Processes to Extract Pure Betacarotenes Molecules Using Acetic Acid Solvent AU - Andry Tahina Rabeharitsara AU - Phandry Nomena Ndjiva Rabearimihaja Y1 - 2016/03/28 PY - 2016 N1 - https://doi.org/10.11648/j.ajac.20160402.15 DO - 10.11648/j.ajac.20160402.15 T2 - American Journal of Applied Chemistry JF - American Journal of Applied Chemistry JO - American Journal of Applied Chemistry SP - 64 EP - 70 PB - Science Publishing Group SN - 2330-8745 UR - https://doi.org/10.11648/j.ajac.20160402.15 AB - Betacarotenes molecules extractions using acetic acid (99% of purity) as solvent followed by distillated water neutralization or hexane solvent to get back betacarotenes. To obtain pure betacarotenes molecules, distillation step is necessary for the second process which use hexane solvent; however for the first process which use distillated water neutralization, decantation step is enough. The first process is energetically profitable. Unrefined palm oil which contains betacarotenes molecules with triglycerides and grease acids is used as model product for betacarotenes extraction. Both of the two processes have extraction rate more than 27% which increases proportionally with the weight of unrefined palm oil used for extraction. VL - 4 IS - 2 ER -